pytroch获取中间变量/feature

方法1

使用torchvision.models.feature_extraction的方法create_feature_extractor

from torchvision.models.feature_extraction import create_feature_extractor
import torch
import torchvision

model = torchvision.models.resnet18()

for n,m in model.named_modules()
Traceback (most recent call last): File "/home/lab306/ln/faster-rcnn-pytorch-master/train.py", line 451, in <module> fit_one_epoch(model, train_util, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir) File "/home/lab306/ln/faster-rcnn-pytorch-master/utils/utils_fit.py", line 27, in fit_one_epoch rpn_loc, rpn_cls, roi_loc, roi_cls, total = train_util.train_step(images, boxes, labels, 1, fp16, scaler) File "/home/lab306/ln/faster-rcnn-pytorch-master/nets/frcnn_training.py", line 321, in train_step losses = self.forward(imgs, bboxes, labels, scale) File "/home/lab306/ln/faster-rcnn-pytorch-master/nets/frcnn_training.py", line 290, in forward roi_cls_locs, roi_scores = self.model_train([base_feature, sample_rois, sample_indexes, img_size], mode = 'head') File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 169, in forward return self.module(*inputs[0], **kwargs[0]) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/lab306/ln/faster-rcnn-pytorch-master/nets/frcnn.py", line 104, in forward roi_cls_locs, roi_scores = self.head.forward(base_feature, rois, roi_indices, img_size) File "/home/lab306/ln/faster-rcnn-pytorch-master/nets/classifier.py", line 102, in forward fc7 = self.classifier(pool) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/container.py", line 217, in forward input = module(input) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/container.py", line 217, in forward input = module(input) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/lab306/ln/faster-rcnn-pytorch-master/nets/resnet50.py", line 38, in forward residual = self.downsample(x) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/container.py", line 217, in forward input = module(input) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/modules/batchnorm.py", line 171, in forward return F.batch_norm( File "/home/lab306/anaconda3/envs/faster-rcnn-pytorch-master/lib/python3.8/site-packages/torch/nn/functional.py", line 2450, in batch_norm return torch.batch_norm( torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 392.00 MiB (GPU 0; 23.68 GiB total capacity; 7.65 GiB already allocated; 356.88 MiB free; 8.04 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
最新发布
05-14
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值