Python在数据科学与机器学习中的应用

Python 是数据科学与机器学习领域的首选语言之一,广泛应用于数据处理、分析、建模以及预测任务中。Python 拥有丰富的库和工具,能够帮助开发者高效处理数据,并构建各种机器学习模型。下面我们将详细介绍 Python 在数据科学与机器学习中的应用,从基础的数据处理、可视化到复杂的模型训练和预测。

一、Python 数据科学的核心库

在数据科学领域,Python 的三大核心库是 PandasNumPyMatplotlib/Seaborn。它们用于数据的读取、处理、分析和可视化。

1.1 Pandas

Pandas 是用于数据处理和分析的最常用库,主要提供 DataFrameSeries 这两种数据结构,方便处理结构化数据(如表格、CSV 文件等)。

  • 安装 Pandas

    pip install pandas
    
  • 读取和处理数据

    import pandas as pd
    
    # 读取 CSV 文件
    df = pd.read_csv('data.csv')
    
    # 查看数据的前几行
    print(df.head())
    
    # 数据筛选和过滤
    filtered_data = df[df['age'] > 30]
    
    # 添加新列
    df['new_column'] = df['salary'] * 0.1
    
    # 缺失值处理
    df.fillna(0, inplace=True)
    
    # 分组统计
    grouped_data = df.groupby('department')['salary'].mean()
    print(grouped_data)
    
1.2 NumPy

NumPy 是用于数值计算的基础库,特别适合处理大规模的多维数组和矩阵运算。Pandas 数据处理的底层数据结构其实基于 NumPy。

  • 安装 NumPy

    pip install numpy
    
  • 基本数组操作

    import numpy as np
    
    # 创建数组
    arr = np.array([1, 2, 3, 4])
    
    # 生成 2D 矩阵
    matrix = np.array([[1, 2], [3, 4]])
    
    # 数组运算
    arr_squared = arr ** 2
    matrix_sum = matrix + 10
    
    # 数组统计
    mean_value = np.mean(arr)
    std_dev = np.std(arr)
    print(mean_value, std_dev)
    
1.3 数据可视化(Matplotlib 和 Seaborn)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值