深度残差收缩网络的完整PyTorch代码

这篇文章介绍了深度残差收缩网络的基础理论,如何在PyTorch中实现,以及如何通过RSNet进行故障诊断。它结合了残差网络、注意力机制和软阈值化,适用于噪声数据处理。主要代码来自PyTorch-CIFAR100项目和知乎文章,并提供了不同网络结构的示例如RSNet18和RSNet34。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度残差收缩网络的完整PyTorch代码

1、基础理论

深度残差收缩网络是建立在三个部分的基础之上的,包括残差网络、注意力机制和软阈值化。
在这里插入图片描述
其功能特色包括:

1)由于软阈值化是信号降噪算法的常用步骤,所以深度残差收缩网络比较适合强噪、高冗余数据。同时,软阈值化的梯度要么为0,要么为1,这与ReLU激活函数是相似/一致的。

在这里插入图片描述

2)由于软阈值化的阈值是通过类似于SENet的注意力机制自适应地进行设置的,深度残差收缩网络能够根据每个样本的情况,为每个样本单独地设置阈值,因此适用于每个样本内噪声含量不同的情况。

3)当数据噪声很弱、没有噪声时,深度残差收缩网络可能也是适用的。其前提是阈值可以被训练成非常接近于0的值,从而软阈值化就相当于不存在了。

4)值得注意的是,软阈值函数的阈值不能太大,否则会导致所有的输出都是0。所以深度残差收缩网络的注意力模块是经过专门设计的,与一般的SENet是存在明显区别的。

该方法的文献来源:

M. Zhao, S. Zhong, X. Fu, B. Tang, M. Pecht, Deep residual shrinkage networks for fault diagnosis, IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4681-4690, 2020. (https://ieeexplore.ieee.org/document/8850096/

2、PyTorch代码

本文的PyTorch代码是在这份代码(https://github.com/weiaicunzai/pytorch-cifar100)的基础上修改得到的,所以要下载这份代码到本地。主要是修改了models/resnet.py(https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/resnet.py)和utils.py(https://github.com/weiaicunzai/pytorch-cifar100/blob/master/utils.py)的代码。

另一方面,残差收缩网络的核心代码,则是来源于知乎上最前线创作的一篇文章《用于故障诊断的残差收缩网络》(https://zhuanlan.zhihu.com/p/337346575)。

具体地,将resnet.py文件的名称,改为了rsnet.py,意思是residual shrinkage network。修改后的rsnet.py代码如下:

import torch
import torch.nn as nn

class BasicBlock(nn.Module):

    expansion = 1
    
    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()
        self.shrinkage = Shrinkage(out_channels, gap_size=(1, 1))
        #residual function
        self.residual_function = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False)
评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值