使用pandas进行数据读取,最常读取的数据格式如下:
| NO | 数据类型 | 说明 | 使用方法 |
|---|---|---|---|
| 1 | csv, tsv, txt | 可以读取纯文本文件 | pd.read_csv |
| 2 | excel | 可以读取.xls .xlsx 文件 | pd.read_excel |
| 3 | mysql | 读取关系型数据库 | pd.read_sql |
本文主要介绍pd.read_csv() 的用法:
pd.read_csv
pandas对纯文本的读取提供了非常强力的支持,参数有四五十个。这些参数中,有的很容易被忽略,但是在实际工作中却用处很大。pd.read_csv() 的格式如下:
read_csv(
reader: FilePathOrBuffer, *,
sep: str = ...,
delimiter: str | None = ...,
header: int | Sequence[int] | str = ...,
names: Sequence[str] | None = ...,
index_col: int | str | Sequence | Literal[False] | None = ...,
usecols: int | str | Sequence | None = ...,
squeeze: bool = ...,
prefix: str | None = ...,
mangle_dupe_cols: bool = ...,
dtype: str | Mapping[str, Any] | None = ...,
engine: str | None = ...,
converters: Mapping[int | str, (*args, **kwargs) -> Any] | None = ...,
true_values: Sequence[Scalar] | None = ...,
false_values: Sequence[Scalar] | None = ...,
skipinitialspace: bool = ...,
skiprows: Sequence | int | (*args, **kwargs) -> Any | None = ...,
skipfooter: int = ..., nrows: int | None = ..., na_values=...,
keep_default_na: bool = ..., na_filter: bool = ...,
verbose: bool = ..., skip_blank_lines: bool = ...,
parse_dates: bool |
Python pandas深度解析:CSV数据读取与参数详解

最低0.47元/天 解锁文章
1万+





