数据分析第十一讲:pandas应用入门(六)

pandas应用入门(六)

我们再来看看Index类型,它为SeriesDataFrame对象提供了索引服务,有了索引我们就可以排序数据(sort_index方法)、对齐数据(在运算和合并数据时非常重要)并实现对数据的快速检索(索引运算)。由于DataFrame类型表示的是二维数据,所以它的行和列都有索引,分别是indexcolumnsIndex类型的创建的比较简单,通常给出datadtypename三个参数即可,分别表示作为索引的数据、索引的数据类型和索引的名称。由于Index本身也是一维的数据,索引它的方法和属性跟Series非常类似,你可以尝试创建一个Index对象,然后尝试一下之前学过的属性和方法在Index类型上是否生效。接下来,我们主要看看Index的几种子类型。

范围索引

范围索引是由具有单调性的整数构成的索引,我们可以通过RangeIndex构造器来创建范围索引,也可以通过RangeIndex类的类方法from_range来创建范围索引,代码如下所示。

代码:

sales_data = np.random.randint(400, 1000, 12)
index = pd.RangeIndex(1, 13, name='月份')
ser = pd.Series(data=sales_data, index=index)
ser

输出:

月份
1     703
2     705
3     557
4     943
5     961
6     615
7     788
8     985
9     921
10    951
11    874
12    609
dtype: int64

分类索引

分类索引是由定类尺度构成的索引。如果我们需要通过索引将数据分组,然后再进行聚合操作,分类索引就可以派上用场。分类索引还有一个名为reorder_categories的方法,可以给索引指定一个顺序,分组聚合的结果会按照这个指定的顺序进行呈现,代码如下所示。

代码:

sales_data = [6, 6, 7, 6, 8, 6]
index = pd.CategoricalIndex(
    data=['苹果', '香蕉', '苹果', '苹果', '桃子', '香蕉'],
    categories=['苹果', '香蕉', '桃子'],
    ordered=True
)
ser = pd.Series(data=sales_data, index=index)
ser

输出:

苹果    6
香蕉    6
苹果    7
苹果    6
桃子    8
香蕉    6
dtype: int64

基于索引分组数据,然后使用sum进行求和。

ser.groupby(level=0).sum()

输出:

苹果    19
香蕉    12
桃子     8
dtype: int64

指定索引的顺序。

ser.index = index.reorder_categories(['香蕉', '桃子', '苹果'])
ser.groupby(level=0).sum()

输出:

香蕉    12
桃子     8
苹果    19
dtype: int64

多级索引

Pandas 中的MultiIndex类型用来表示层次或多级索引。可以使用MultiIndex类的类方法from_arraysfrom_productfrom_tuples等来创建多级索引,我们给大家举几个例子。

代码:

tuples = [(1, 'red'), (1, 'blue'), (2, 'red'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_46863529

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值