# -*- coding: utf-8 -*-
# @Time : 2022/8/25 13:30
# @Author : Zhang Min
# @FileName: tif按步长分块.py
import glob
import math
import time
import numpy as np
from osgeo import gdal
def readTif(tifFile):
dataset = gdal.Open(tifFile)
width = dataset.RasterXSize
height = dataset.RasterYSize
geotrans = dataset.GetGeoTransform()
proj = dataset.GetProjection()
data = dataset.ReadAsArray(0, 0, width, height)
del dataset
return data, geotrans, proj, width, height
def writeTif(filename, geotrans, proj, data):
# 判断栅格数据的数据类型
if 'int8' in data.dtype.name:
datatype = gdal.GDT_Byte
elif 'int16' in data.dtype.name:
datatype = gdal.GDT_UInt16
else:
datatype = gdal.GDT_Float32
# 判读数组维数
if len(data.shape) == 3:
im_bands, im_height, im_width = data.shape
else:
im_bands, (im_height, im_width) = 1, data.shape
# 创建文件
driver = gdal.GetDriverByName("GTiff") # 数据类型必须有,因为要计算需要多大内存空间
dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
dataset.SetGeoTransform(geotrans) # 写入仿射变换参数
dataset.SetProjection(proj) # 写入投影
if im_bands == 1:
dataset.GetRasterBand(1).WriteArray(data) # 写入数组数据
else:
for i in range(im_bands):
dataset.GetRasterBand(i + 1).WriteArray(data[i])
del dataset
def cal_nvdi(data):
ndvi_molecule = data[3, :, :] - data[2, :, :]
ndvi_denominator = data[3, :, :] + data[2, :, :] + 0.00001
ndvi = ndvi_molecule / ndvi_denominator
return ndvi
if __name__ == '__main__':
# 时序影像的文件夹位置
tif_list = glob.glob(r'D:\工作日志\NDVI分块\耕地\*.tif')
# 保存文件夹
dataNewArea = r"D:\工作日志\NDVI分块\耕地分块结果"
# 步长
step = 1024
for i in range(len(tif_list)):
start_time = time.time()
dataset = gdal.Open(tif_list[i])
width = dataset.RasterXSize # 列
height = dataset.RasterYSize # 行
geotrans = dataset.GetGeoTransform()
proj = dataset.GetProjection()
# data = dataset.ReadAsArray(0, 0, width, height)
# print(width, height) # 列 6787 行:7431
# print(data.shape) # C H(行:7431) W(列:6787)
# ReadAsArray的起始点
startX = 0
startY = 0
# 列 行 按照step 分成多少块,向上取整
wcNum = math.ceil(width / step) # 列块
hrNum = math.ceil(height / step) # 行块
for i in range(0, wcNum): # 逐列块
for j in range(0, hrNum): # 逐行块
# 处于最后一列最后一行,行列都向内缩进forwardX,forwardY个像素
if (i == wcNum - 1) and (j == hrNum - 1):
differentialX = step - (width - startX) # 381 缺失381列刚好凑满1024
forwardX = startX - differentialX # 向前挪动到6144-381
differentialY = step - (height - startY) # 761
forwardY = startY - differentialY # 向前挪动到6407
new_data = dataset.ReadAsArray(forwardX, forwardY, step, step).astype(np.float32)
# NDVI计算
ndvi = cal_nvdi(new_data)
# 投影坐标计算
px = geotrans[0] + forwardX * geotrans[1] + forwardY * geotrans[2]
py = geotrans[3] + forwardX * geotrans[4] + forwardY * geotrans[5]
# 处于最后一列,列向内缩进forwardX个像素
elif (i == wcNum - 1):
differentialX = step - (width - startX) # 381 缺失381列刚好凑满1024
forwardX = startX - differentialX # 向前挪动到6144-381
new_data = dataset.ReadAsArray(forwardX, startY, step, step).astype(np.float32)
ndvi = cal_nvdi(new_data)
px = geotrans[0] + forwardX * geotrans[1] + startY * geotrans[2]
py = geotrans[3] + forwardX * geotrans[4] + startY * geotrans[5]
# 处于最后一行,行向内缩进forwardY个像素
elif (j == hrNum - 1):
differentialY = step - (height - startY) # 761 缺失761列刚好凑满1024
forwardY = startY - differentialY # 向前挪动到7431-761
new_data = dataset.ReadAsArray(startX, forwardY, step, step).astype(np.float32)
ndvi = cal_nvdi(new_data)
px = geotrans[0] + startX * geotrans[1] + forwardY * geotrans[2]
py = geotrans[3] + startX * geotrans[4] + forwardY * geotrans[5]
# 非以上情况
else:
new_data = dataset.ReadAsArray(startX, startY, step, step).astype(np.float32)
ndvi = cal_nvdi(new_data)
px = geotrans[0] + startX * geotrans[1] + startY * geotrans[2]
py = geotrans[3] + startX * geotrans[4] + startY * geotrans[5]
startY = startY + step
newGeotrans = (px, geotrans[1], geotrans[2], py, geotrans[4], geotrans[5])
# 写入
writeTif(dataNewArea + '//ndvi_' + str(i) + "_" + str(j) + ".tif", geotrans=newGeotrans, proj=proj,
data=ndvi)
startX = startX + step
startY = 0
end_time = time.time()
print(end_time - start_time)
Python 遥感影像分块读取并计算NDVI(或其他操作)
最新推荐文章于 2024-08-15 11:17:44 发布