1.卷积神经网络入门-训练手写体识别


前言

笔者权当做笔记,借鉴的是《Python 深度学习》这本书,里面的代码也都是书上的代码,用的是jupyter notebook 编写代码。今天正式接触卷积神经网络。


一、代码和运行结果

import keras
from keras import layers
from keras import models
from keras.datasets import mnist
from keras.utils import to_categorical

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

h = model.fit(train_images, train_labels, epochs=5, batch_size=64)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print(test_acc)

在这里插入图片描述


二、图例解读代码过程

以下是我个人理解的手写辨识的代码理解。
网络的架构是:
在这里插入图片描述
个人图示:
在这里插入图片描述


总结

刚刚接触的卷积神经网络,MNIST数字识别算得上是卷积神经网络中的“Hello World”;我也仔细阅读了《Python 深度学习》这本书有关这方面的内容,真心不错!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太笨鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值