NVIDIA CUDA 高度并行处理器编程(一):CUDA简介

本文介绍了NVIDIA CUDA编程的基础,重点讨论数据并行性及其在GPU加速计算中的作用。CUDA程序结构包括主机代码和设备代码,其中设备代码利用数据并行性在GPU上执行。通过向量加法的kernel函数示例,阐述了如何分配设备内存,执行kernel函数以及线程的组织方式。CUDA的kernel函数通过SPMD模型实现并行计算,使得大量线程同时处理不同数据段,提高计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 数据并行性

数据并行性是一种属性,这种属性支持算数操作按照程序的数据结构同时安全的执行。CUDA设备通过采用大量的数据并行性的方式来加快应用程序的执行速度。
 在并行编程中,数据并行并不是唯一一种广泛使用的并行性,任务并行性在并行编程中也有广泛的使用。任务并行性通常对应用进行任务分解得到。例如,对于向量加法和矩阵向量乘法的简单应用来说,每个操作都可以看做一个任务,如果这两个任务可以独立执行,那么就能得到任务并行性。
 一般情况下,数据并行性是并行程序可拓展性地的主要来源。对于大型数据集很容易找到大量的数据并行性,以充分利用大规模并行处理器,随着每一代硬件提供更多执行单元,应用的性能也能大幅度提升。然而,任务并行性对于性能的提升也很重要,在介绍CUDA流的时候再介绍。

 我们利用上图阐述数据并行性的概念,C[i]是A[i]与B[i]相加后得到的,此向量相加操作可以并行执行。

2. CUDA的程序结构

 CUDA程序结构反映了在计算机中有一个主机(CPU)和一个或多个设备(GPU)。每个CUDA源文件包含主机代码和设备代码。默认情况下,任何只包含主机代码的C程序都可以看做CUDA程序。可以对任何C源文件添加设备函数和设备数据声明。针对设备的函数的数据声明都带有CUDA关键字标记。这些函数通常体现了丰富的数据并行性。
 一旦设备函数和数据声明添加进C源文件中,编不能通过gcc或其他编译器的编译。这些代码需要用能够识别这些设备函数和数据声明的编译器编译,比如NVCC(NVIDIA C Compiler)。如下图上部所示

 NVCC处理程序时通过CUDA关键字区分主机程序和设备程序。主机代码由主机标准的C或C++编译器编译,而设备代码用CUDA关键字来标示数据并行函数 (称为kernel) 。通常由NVCC编译器进一步编译,并在GUP上执行,如果没有GPU或者kernel更适合在CPU上执行,则可以通过MCUDA等工具将kernel函数转到CPU上执行。
  典型的CUDA程序的执行过程如下图所示。这是个简化的执行过程,其中GPU和CPU的执行过程没有重叠,然而很多模型都会采用CPU和GPU重叠执行的模型,以充分利用两者。
  执行过程始于主机,遇到kernel函数时函数转移到设备上大量线程同时执行。在调用kernel函数时生成的所有线程统称网络,下图就包含了两个网络。当kernel函数中所有线程都完成他们的执行任务后,相应的网格也会终止,在调用下一个kernel函数时程序会转到主机上继续执行。

 启动一个kernel通常会产生大量线程,以充分利用数据并行性,向量加法中,线程数与向量长度相同。在高效的硬件支持下这些线程的生成和调度需要很少的时钟周期完成,但在CPU中通常需要数千个时钟周期。

3. 向量加法kernel函数

 在主机代码的每一段中,给主机处理的变量名加上前缀h_,在设备要处理的变量名前加上前缀d_,以示区别。先看传统的C程序:

// Compute vector sum h_C = h_A+h_B
void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
   
	for (inti= 0; i < n; i++) h_C[i] = h_A[i] + h_B[i];
}
int main()
{
   
	// Memory allocation for h_A, h_B, and h_C
	// I/O to read h_A and h_B, N elements eachvecAdd(h_A, h_B, h_C, N);
}

 此程序通过for循环顺序执行向量加法,在第[i]轮循环中,计算A[i]和B[i]的和并存入C[i]。并行执行向量加法的简单方法是修改vecAdd函数:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的博仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值