题意:
给出一棵树,q 个查询,每次查询给出 (u, l, r) 代表病毒在 u 点爆发,在 [l, r] 的温度可以传播
根节点为 1,保证离根节点越近,温度越高,根节点温度最高。
思路:
对于任意一节点,它的父节点的温度递增(都大于它),子节点的温度递减(都小于它)。因为父节点温度递增,所以可以倍增logn的找到小于等于温度r的最大的父节点x,此时问题转化为,在x及其子树下查询大于l温度的节点数。
先按照dfs序建n棵权值主席树,再倍增找到x,再
法1:二分+区间第k大(nlognlogn):区间的第k大值具有单调性,二分找第k大值,使其是区间最小的大于l的第k大,ans=size[x]-k+1
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int q,n,tot,tim,len,root[maxn],a[maxn],b[maxn],c[maxn],L[maxn],R[maxn],fa[maxn][25];
vector<int>mp[maxn];
struct node{
int l,r,val;
}tr[maxn*4+maxn*17];
int build(int l,int r){
int rt=++tot;
if(l==r)return tot;
int mid=(l+r)>>1;
tr[rt].l=build(l,mid);
tr[rt].r=build(mid+1,r);
return rt;
}
int update(int pre,int l,int r,int x){
int now=++tot;
tr[now]=tr[pre];
if(l==r){
tr[now].val++;
return now;
}
int mid=(l+r)>>1;
if(x<=mid)tr[now].l=update(tr[pre].l,l,mid,x);
else tr[now].r=update(tr[pre].r,mid+1,r,x);
tr[now].val=tr[tr[now].l].val+tr[tr[now].r].val;
return now;
}
int query(int last,int first,int l,int r,int k){
if(l==r)return r;
int mid=(l+r)>>1,cha=tr[tr[last].l].val-tr[tr[first].l].val;
if(k<=cha)return query(tr[last].l,tr[first].l,l,mid,k);
else return query(tr[last].r,tr[first].r,mid+1,r,k-cha);
}
void dfs(int x,int f){
++tim;
root[tim]=update(root[tim-1],1,len,c[x]);
L[x]=tim;
for(auto y:mp[x]){
if(y==f)continue;
dfs(y,x);
fa[y][0]=x;
}
R[x]=tim;
}
int main(){
scanf("%d",&n);
for(int i=1,x,y;i<n;i++){
scanf("%d%d",&x,&y);
mp[x].push_back(y),mp[y].push_back(x);
}
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+1,b+1+n);
len=unique(b+1,b+1+n)-b-1;
for(int i=1;i<=n;i++)c[i]=lower_bound(b+1,b+1+n,a[i])-b;
root[0]=build(1,len);
dfs(1,0);
for(int i=1;i<=20;i++)
for(int j=1;j<=n;j++)
fa[j][i]=fa[fa[j][i-1]][i-1];
scanf("%d",&q);
while(q--){
int d,s,t;
scanf("%d%d%d",&d,&s,&t);
if(a[d]<s||a[d]>t){
printf("0\n");
continue;
}
for(int i=20;i>=0;i--){
if(fa[d][i]&&a[fa[d][i]]<=t)d=fa[d][i];
}
s=lower_bound(b+1,b+1+len,s)-b;
t=lower_bound(b+1,b+1+len,t)-b;
int l=1,r=R[d]-L[d]+1,ans=0,sum=R[d]-L[d]+1;
while(l<=r){
int mid=(l+r)>>1;
int bat=query(root[R[d]],root[L[d]-1],1,len,mid);
if(bat<s)l=mid+1;
else ans=mid,r=mid-1;
}
printf("%d\n",sum-ans+1);
}
}
法2:直接找区间大于l的数的个数(nlogn)
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int q,n,tot,tim,len,root[maxn],a[maxn],b[maxn],c[maxn],L[maxn],R[maxn],fa[maxn][25];
vector<int>mp[maxn];
struct node{
int l,r,val;
}tr[maxn*4+maxn*17];
int build(int l,int r){
int rt=++tot;
if(l==r)return tot;
int mid=(l+r)>>1;
tr[rt].l=build(l,mid);
tr[rt].r=build(mid+1,r);
return rt;
}
int update(int pre,int l,int r,int x){
int now=++tot;
tr[now]=tr[pre];
if(l==r){
tr[now].val++;
return now;
}
int mid=(l+r)>>1;
if(x<=mid)tr[now].l=update(tr[pre].l,l,mid,x);
else tr[now].r=update(tr[pre].r,mid+1,r,x);
tr[now].val=tr[tr[now].l].val+tr[tr[now].r].val;
return now;
}
int query(int pre,int now,int l,int r,int k){
if(l==r)return tr[now].val-tr[pre].val;
int mid=(l+r)>>1,cha=tr[tr[now].r].val-tr[tr[pre].r].val;
if(k<=mid)return query(tr[pre].l,tr[now].l,l,mid,k)+cha;
else return query(tr[pre].r,tr[now].r,mid+1,r,k);
}
void dfs(int x,int f){
++tim;
root[tim]=update(root[tim-1],1,len,c[x]);
L[x]=tim;
for(auto y:mp[x]){
if(y==f)continue;
dfs(y,x);
fa[y][0]=x;
}
R[x]=tim;
}
int main(){
scanf("%d",&n);
for(int i=1,x,y;i<n;i++){
scanf("%d%d",&x,&y);
mp[x].push_back(y),mp[y].push_back(x);
}
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+1,b+1+n);
len=unique(b+1,b+1+n)-b-1;
for(int i=1;i<=n;i++)c[i]=lower_bound(b+1,b+1+n,a[i])-b;
root[0]=build(1,len);
dfs(1,0);
for(int i=1;i<=20;i++)
for(int j=1;j<=n;j++)
fa[j][i]=fa[fa[j][i-1]][i-1];
scanf("%d",&q);
while(q--){
int d,s,t;
scanf("%d%d%d",&d,&s,&t);
if(a[d]<s||a[d]>t){
printf("0\n");
continue;
}
for(int i=20;i>=0;i--){
if(fa[d][i]&&a[fa[d][i]]<=t)d=fa[d][i];
}
s=lower_bound(b+1,b+1+len,s)-b;
t=lower_bound(b+1,b+1+len,t)-b;
printf("%d\n",query(root[L[d]-1],root[R[d]],1,len,s));
}
}
法3:离线+树上启发式+树状数组
#include<cstdio>
constexpr int N = 1e5 + 5;
int n, dn = 3e5;
int T[N], c[N * 3], son[N], siz[N];
int ans[N], l[N], r[N], tt[N << 2];
int fa[N][20];
bool go[N];
vector<int> vt[N], id[N];
int lowbit(int x) {
return x & -x;
}
void add(int x, int v) {
while(x <= dn) {
c[x] += v;
x += lowbit(x);
}
}
int ask(int x) {
int ret = 0;
while(x) {
ret += c[x];
x -= lowbit(x);
}
return ret;
}
void dfs(int u, int f) {
fa[u][0] = f;
for(int i = 1; i < 20; ++i) {
fa[u][i] = fa[fa[u][i - 1]][i - 1];
}
siz[u] = 1;
for(int v : vt[u]) {
if(v == f) continue;
dfs(v, u);
siz[u] += siz[v];
if(son[u] == 0 || siz[son[u]] < siz[v]) son[u] = v;
}
}
int fd(int u, int up) {
for(int i = 19; i >= 0; --i) {
if(T[fa[u][i]] <= up) u = fa[u][i];
}
return u;
}
void dfs3(int u, int f) {
add(T[u], -1);
for(int v : vt[u]) {
if(v != f) dfs3(v, u);
}
}
void dfs2(int u, int f, bool vis) {
for(int v : vt[u]) {
if(v == f || v == son[u]) continue;
dfs2(v, u, 0);
}
if(son[u]) dfs2(son[u], u, 1);
for(int v : vt[u]) {
if(v == f || v == son[u]) continue;
dfs2(v, u, 1);
}
add(T[u], 1);
if(go[u] == 0)
for(int v : id[u]) {
go[u] = 1;
int L = l[v], R = r[v];
ans[v] = ask(R) - ask(L - 1);
}
if(!vis) dfs3(u, f);
}
int main() {
scanf("%d", &n);
for(int i = 1, u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
vt[u].push_back(v);
vt[v].push_back(u);
}
int cnt = 0;
for(int i = 1; i <= n; ++i) scanf("%d", &T[i]), tt[++cnt] = T[i];
dfs(1, 1);
int q, x;
scanf("%d", &q);
for(int i = 1; i <= q; ++i) {
scanf("%d%d%d", &x, &l[i], &r[i]);
tt[++cnt] = l[i];
tt[++cnt] = r[i];
if(T[x] < l[i] || T[x] > r[i]) continue;
int gf = fd(x, r[i]);
id[gf].push_back(i);
}
sort(tt + 1, tt + 1 + cnt);
int len = unique(tt + 1, tt + 1 + cnt) - tt - 1; dn = len;
for(int i = 1; i <= n; ++i) T[i] = lower_bound(tt + 1, tt + len + 1, T[i]) - tt;
for(int i = 1; i <= q; ++i) {
l[i] = lower_bound(tt + 1, tt + 1 + len, l[i]) - tt;
r[i] = lower_bound(tt + 1, tt + 1 + len, r[i]) - tt;
}
dfs2(1, 0, 1);
for(int i = 1; i <= q; ++i) printf("%d\n", ans[i]);
}