机器学习05:正则化

机器学习05:正则化

1 线性回归的正则化

1.1 损失函数

J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 0 n θ j 2 ] J(\theta)=\frac{1}{2m}\left[\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2+\lambda\sum_{j=0}^n\theta_j^2 \right] J(θ)=2m1[i=1m(hθ(x(i))y(i))2+λj=0nθj2]

1.2 梯度下降法

R e p e a t : Repeat: Repeat:
θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) θ j : = θ j − α [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) − λ m θ j ] : = θ j ( 1 − α λ m ) − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_0^{(i)}\\ \begin{aligned}\theta_j&:=\theta_j-\alpha\left[\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}-\frac{\lambda}{m}\theta_j\right]\\&:=\theta_j(1-\alpha\frac{\lambda}{m})-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}\end{aligned} θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)θj:=θjα[m1i=1m(hθ(x(i))y(i))xj(i)mλθj]:=θj(1αmλ)αm1i=1m(hθ(x(i))y(i))xj(i)

1.3 正规方程法

X = [ ( x ( 1 ) ) T ⋅ ⋅ ⋅ ( x ( m ) ) T ] , y = [ y ( 1 ) ⋅ ⋅ ⋅ y ( m ) ] X=\begin{bmatrix}(x^{(1)})^T\\···\\ (x^{(m)})^T\end{bmatrix},\quad y=\begin{bmatrix}y^{(1)}\\···\\ y^{(m)}\end{bmatrix} X=(x(1))T(x(m))T,y=y(1)y(m)
解得:
θ = ( X T X + λ [ 0 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ] ) − 1 X T y \theta=(X^TX+\lambda\begin{bmatrix} 0 & 0 & \cdots & 0\\ 0& 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{bmatrix})^{-1}X^Ty θ=(XTX+λ000010001)1XTy

1.4 矩阵不可逆问题的解决

正则化之后,线性回归中的不可逆问题将不存在。

2 Logistic 回归的正则化

2.1 损失函数

J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) l o g   h θ ( x ( i ) ) + ( 1 − y ( i ) ) l o g   ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^my^{(i)}log\,h_\theta(x^{(i)})+(1-y^{(i)})log\,(1-h_\theta(x^{(i)}))\right]+\frac{\lambda}{2m}\sum_{j=1}^n\theta_j^2 J(θ)=m1[i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]+2mλj=1nθj2

2.2 梯度下降

R e p e a t : Repeat: Repeat:
θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) θ j : = θ j − α [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) − λ m θ j ] \theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_0^{(i)}\\\theta_j:=\theta_j-\alpha\left[\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}-\frac{\lambda}{m}\theta_j\right] θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)θj:=θjα[m1i=1m(hθ(x(i))y(i))xj(i)mλθj]
其中:
h θ ( x ) = 1 1 − e − θ T x h_\theta(x)=\frac{1}{1-e^{-\theta^Tx}} hθ(x)=1eθTx1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值