自己学习使用,转载自网络
ST-GCN:空间图卷积+时间图卷积,空间图卷积为重点。
图卷积:
数字图像是一个二维的离散信号,对数字图像做卷积操作其实就是利用卷积核(卷积模板)在图像上滑动,将图像点上的像素灰度值与对应的卷积核上的数值相乘,然后将所有相乘后的值相加作为卷积核中间像素对应的图像上像素的灰度值,并最终滑动完所有图像的过程。
用随机的共享的卷积核得到像素点的加权和从而提取到某种特定的特征,然后用反向传播来优化卷积核参数就可以自动的提取特征,是CNN特征提取的基石。
在试图得到节点表示的时候,容易想到的最方便有效的手段就是利用它周围的节点,也就是它的邻居节点或者邻居的邻居等等,这种思想可以归结为一句话:
图中的每个结点无时无刻不因为邻居和更远的点的影响而在改变着自己的状态直到最终的平衡,关系越亲近的邻居影响越大。
图卷积本质上就是原本的X*W(权重)变成了A*X*W,A矩阵整合了其他相邻关节点的信息,A可以用各种形式的,还可以是加上自身的权重(整合的信息中包含自己的信息)。