E. Number Challenge(清晰地推式子)

本文探讨了一种复杂的数学问题,即计算三个变量乘积的因子数量,并通过一系列巧妙的数学转换简化了原始问题。利用莫比乌斯函数和最大公因子等概念,最终将问题转化为可高效解决的形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E. Number Challenge

问题: ∑ i = 1 a ∑ j = 1 b ∑ k = 1 c d ( i j k ) \sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^cd(ijk) i=1aj=1bk=1cd(ijk) d ( n ) d(n) d(n)表示n的因子个数。

推式子:
∑ i = 1 a ∑ j = 1 b ∑ k = 1 c d ( i j k ) ∑ i = 1 a ∑ j = 1 b ∑ k = 1 c ∑ x ∣ i ∑ y ∣ j ∑ z ∣ k [ g c d ( x , y ) = 1 ] [ g c d ( y , z ) = 1 ] [ g c d ( x , z ) = 1 ] ∑ x = 1 a ∑ y = 1 b ∑ z = 1 c ∑ i = 1 a ∑ j = 1 b ∑ k = 1 c ∑ x ∣ i ∑ y ∣ j ∑ z ∣ k [ g c d ( x , y ) = 1 ] [ g c d ( y , z ) = 1 ] [ g c d ( x , z ) = 1 ] ∑ x = 1 a ∑ y = 1 b ∑ z = 1 c ⌊ a x ⌋ ⌊ b y ⌋ ⌊ c z ⌋ [ g c d ( x , y ) = 1 ] [ g c d ( y , z ) = 1 ] [ g c d ( x , z ) = 1 ] ∑ x = 1 a ∑ y = 1 b ∑ z = 1 c ⌊ a x ⌋ ⌊ b y ⌋ ⌊ c z ⌋ ∑ d ∣ g c d ( x , y ) μ ( d ) [ g c d ( y , z ) = 1 ] [ g c d ( x , z ) = 1 ] ∑ d = 1 m i n ( a , b ) ∑ x = 1 a ∑ y = 1 b ∑ z = 1 c ⌊ a x ⌋ ⌊ b y ⌋ ⌊ c z ⌋ ∑ d ∣ g c d ( x , y ) μ ( d ) [ g c d ( y , z ) = 1 ] [ g c d ( x , z ) = 1 ] ∑ d = 1 m i n ( a , b ) μ ( d ) ∑ x = 1 , d ∣ x a ∑ y = 1 , d ∣ y b ∑ z = 1 c ⌊ a x ⌋ ⌊ b y ⌋ ⌊ c z ⌋ [ g c d ( y , z ) = 1 ] [ g c d ( x , z ) = 1 ] ∑ d = 1 m i n ( a , b ) μ ( d ) ∑ x = 1 ⌊ a d ⌋ ∑ y = 1 ⌊ b d ⌋ ∑ z = 1 c ⌊ a d x ⌋ ⌊ b d y ⌋ ⌊ c z ⌋ [ g c d ( y , z ) = 1 ] [ g c d ( x , z ) = 1 ] ∑ d = 1 m i n ( a , b ) μ ( d ) ∑ z = 1 c ∑ x = 1 ⌊ a d ⌋ [ g c d ( x , z ) = 1 ] ⌊ a d x ⌋ ∑ y = 1 ⌊ b d ⌋ ⌊ b d y ⌋ ⌊ c z ⌋ [ g c d ( y , z ) = 1 ] \sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^cd(ijk)\\ \sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c\sum_{x|i}\sum_{y|j}\sum_{z|k}[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]\\ \sum_{x=1}^a\sum_{y=1}^b\sum_{z=1}^c\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c\sum_{x|i}\sum_{y|j}\sum_{z|k}[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]\\ \sum_{x=1}^a\sum_{y=1}^b\sum_{z=1}^c\lfloor\frac ax\rfloor\lfloor\frac by\rfloor\lfloor\frac cz\rfloor[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]\\ \sum_{x=1}^a\sum_{y=1}^b\sum_{z=1}^c\lfloor\frac ax\rfloor\lfloor\frac by\rfloor\lfloor\frac cz\rfloor\sum_{d|gcd(x,y)}\mu(d)[gcd(y,z)=1][gcd(x,z)=1]\\ \sum_{d=1}^{min(a,b)}\sum_{x=1}^a\sum_{y=1}^b\sum_{z=1}^c\lfloor\frac ax\rfloor\lfloor\frac by\rfloor\lfloor\frac cz\rfloor\sum_{d|gcd(x,y)}\mu(d)[gcd(y,z)=1][gcd(x,z)=1]\\ \sum_{d=1}^{min(a,b)}\mu(d)\sum_{x=1,d|x}^a\sum_{y=1,d|y}^b\sum_{z=1}^c\lfloor\frac ax\rfloor\lfloor\frac by\rfloor\lfloor\frac cz\rfloor[gcd(y,z)=1][gcd(x,z)=1]\\ \sum_{d=1}^{min(a,b)}\mu(d)\sum_{x=1}^{\lfloor\frac ad\rfloor}\sum_{y=1}^{\lfloor\frac bd\rfloor}\sum_{z=1}^c\lfloor\frac a{dx}\rfloor\lfloor\frac b{dy}\rfloor\lfloor\frac cz\rfloor[gcd(y,z)=1][gcd(x,z)=1]\\ \sum_{d=1}^{min(a,b)}\mu(d)\sum_{z=1}^c\sum_{x=1}^{\lfloor\frac ad\rfloor}[gcd(x,z)=1]\lfloor\frac a{dx}\rfloor\sum_{y=1}^{\lfloor\frac bd\rfloor}\lfloor\frac b{dy}\rfloor\lfloor\frac cz\rfloor[gcd(y,z)=1]\\ i=1aj=1bk=1cd(ijk)i=1aj=1bk=1cxiyjzk[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]x=1ay=1bz=1ci=1aj=1bk=1cxiyjzk[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]x=1ay=1bz=1cxaybzc[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]x=1ay=1bz=1cxaybzcdgcd(x,y)μ(d)[gcd(y,z)=1][gcd(x,z)=1]d=1min(a,b)x=1ay=1bz=1cxaybzcdgcd(x,y)μ(d)[gcd(y,z)=1][gcd(x,z)=1]d=1min(a,b)μ(d)x=1,dxay=1,dybz=1cxaybzc[gcd(y,z)=1][gcd(x,z)=1]d=1min(a,b)μ(d)x=1day=1dbz=1cdxadybzc[gcd(y,z)=1][gcd(x,z)=1]d=1min(a,b)μ(d)z=1cx=1da[gcd(x,z)=1]dxay=1dbdybzc[gcd(y,z)=1]

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e3+10;
const double eps = 1e-5;
const int inf = 0x7ffffff;
const ll mod = 1073741824;
int p[N], tot, mu[N];
int a, b, c, g[N][N];
bool st[N];

//求出莫比乌斯函数mu[].
void init() {
    st[1] = mu[1] = 1;
    for(int i=2; i<N; i++) {
        if(!st[i]) p[tot++] = i, mu[i] = -1;
        for(int j=0; j<tot&&i*p[j]<N; j++) {
            st[i*p[j]] = 1;
            if(i % p[j] == 0) break;
            mu[i*p[j]] = -mu[i];
        }
    }
}

//最大公因子
int gcd(int a, int b) {
    if(!b) return a;
    else return gcd(b, a%b);
}

//打表
void get_gcd() {
    for(int i=1; i<=c; i++) {
        for(int j=1; j<=c; j++) {
            g[i][j] = gcd(i, j);
        }
    }
}

//换a,b,c的顺序.
void sort_3() {
    int A = a, B = b, C = c;
    a = min({A, B, C});
    c = max({A, B, C});
    b = A+B+C-a-c; 
}

//\sum_{i=1}^n[gcd(i, m)=1]n/x
ll f(ll n, ll m) {
    ll ans = 0;
    for(int i=1; i<=n; i++) {
        if(g[i][m] == 1) ans += n/i; 
    }
    ans = (ans + mod) % mod;
    return ans;
}


int main() {
#ifndef ONLINE_JUDGE 
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif
    init();
    cin >> a >> b >> c;
    sort_3();
    get_gcd();
    ll ans = 0;

    //核心。
    for(int i=1; i<=a; i++) {
        for(int j=1; j<=b; j++) {
            if(g[i][j] == 1) {
                ans = (ans + mu[j]*(a/i)%mod * f(b/j, i)%mod * f(c/j, i)%mod + mod) % mod;
            }
        }
    }
    cout << ans << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值