机器学习—高斯混合模型(GMM)

一、高斯混合模型定义

1、 高斯混合模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,它是一个将事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。

2、 GMM的直观理解
在这里插入图片描述

二、求解GMM参数为什么需要用EM算法?

总所周知,求解GMM参数使用EM算法。但是为什么呢?这样是必须的吗?

首先,类似于其他的模型求解,我们先使用最大似然估计来尝试求解GMM的参数。如下:

在这里插入图片描述
在这里插入图片描述
可以看出目标函数是和的对数,很难展开,优化问题麻烦,难以对其进行求偏导处理。因此只能寻求其它方法。那就是EM算法。

大佬笔记

三、高斯混合模型和Kmeans对比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值