ElasticSearch总结

本文深入介绍了Elasticsearch的核心概念,包括倒排索引、数据存储、搜索原理以及各种查询操作。详细讲解了如何创建、查询、删除索引,以及设置映射。还探讨了Elasticsearch的分词器,如内置分词器和IK分词器的使用。此外,展示了如何使用Java API进行文档的增删改查和批量操作,以及如何进行全文搜索、范围查询、聚合查询和高亮查询。最后,提到了Elasticsearch在SpringBoot中的整合应用。

倒排索引

倒排索引:将各个文档中的内容,进行分词,形成词条。然后记录词条和数据的唯一标识(id)的对应关系,形成的产物。

ElasticSearch数据的存储和搜索原理
在这里插入图片描述
使用数据库查询存在的问题

  • 性能低:使用模糊查询,左边有通配符,不会走索引,会全表扫描,性能低
  • 功能弱:如果以”华为手机“作为条件,查询不出来数据

使用ElasticSearch
在这里插入图片描述

  • 使用“手机”作为关键字查询
    • 生成的倒排索引中,词条会排序,形成一颗树形结构,提升词条的查询速度
  • 使用“华为手机”作为关键字查询
    • 华为 :1,3
    • 手机 :1,2,3

ElasticSearch概念

  • ElasticSearch是一个基于Lucene的搜索服务器
  • 是一个分布式、高扩展、高实时的搜索与数据分析引擎
  • 基于RESTful web接口
  • Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎
  • 官网:https://www.elastic.co/
  • MySQL有事务性,而ElasticSearch没有事务性,所以你删了的数据是无法恢复的
  • ElasticSearch没有物理外键这个特性,,如果你的数据强一致性要求比较高,还是建议慎用

ElasticSearch和MySql分工不同,MySQL负责存储数据,ElasticSearch负责搜索数据

应用场景

  • 搜索:海量数据的查询
  • 日志数据分析
  • 实时数据分析

ElasticSearch 核心概念

索引(index)

  • ElasticSearch存储数据的地方,可以理解成关系型数据库中的数据库概念。

映射(mapping)

  • mapping定义了每个字段的类型、字段所使用的分词器等。相当于关系型数据库中的表结构.

文档(document)

  • Elasticsearch中的最小数据单元,常以json格式显示。一个document相当于关系型数据库中的一行数据。

倒排索引

  • 一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,对应一个包含它的文档id列表

RESTful风格

  • 表述性状态转移,是一组架构约束条件和原则。满足这些约束条件和原则的应用程序或设计就是RESTful。就是一种定义接口的规范
  • 基于HTTP
  • 可以使用XML格式定义或JSON格式定义
  • 每一个URI代表1种资源
  • 客户端使用GET、POST、PUT、DELETE 4个表示操作方式的动词对服务端资源进行操作
    • GET:用来获取资源
    • POST:用来新建资源(也可以用于更新资源)
    • PUT:用来更新资源
    • DELETE:用来删除资源

添加索引

  • PUT http://ip:端口/索引名称

查询索引

  • GET http://ip:端口/索引名称 # 查询单个索引信息
  • GET http://ip:端口/索引名称1,索引名称2… # 查询多个索引信息
  • GET http://ip:端口/_all # 查询所有索引信息

删除索引

  • DELETE http://ip:端口/索引名称

关闭索引

  • POST http://ip:端口/索引名称/_close

打开索引

  • POST http://ip:端口/索引名称/_open

操作映射

数据类型

  • 简单数据类型
    • 字符串
      • text:会分词,不支持聚合
      • keyword: 不会分词,将全部内容作为一个词条,支持聚合
      • 数值
        在这里插入图片描述
      • 布尔 boolean
      • 二进制 binary
      • 范围类型 integer_range, float_range, long_range, double_range, date_range
      • 日期 date
  • 复杂数据类型
    • 数组:[]
    • 对象:{}
GET goods_index
# 创建索引
PUT person
# 查询索引
GET person
#只查询映射
GET person/_mapping
# 添加映射
PUT person/_mapping
{
  "properties":{
    "name":{
      "type":"keyword"
    },
    "age":{
      "type":"integer"
    }
  }
}
#删除索引
DELETE person
# 创建索引并添加映射
PUT person
{
  "mappings": {
    "properties": {
      "name":{
        "type":"keyword"
      },
      "age":{
        "type":"integer"
      }
    }
  }  
}
PUT person/_mapping
{
  "properties":{
    "address":{
      "type":"text"
    }
  }
}

总结
在这里插入图片描述

PUT person/_doc/1
{
  "name":"张三",
  "age":"19",
  "address":"重庆"
}

# 查询文档
GET person/_doc/1
GET person/_doc/4YNAV3cBWsFGw7fPpne7
# 添加文档,不指定id
POST person/_doc/2
{
  "name":"李四",
  "age":19,
  "address":"渝北"
}
# 修改文档
PUT person/_doc/2
{
  "name":"王五",
  "age":30,
  "address":"成都"
}
#根据id查询数据
GET person/_doc/2
#查询所有文档
GET person/_search
#根据id删除文档
DELETE person/_doc/4YNAV3cBWsFGw7fPpne7

分词器

  • 分词器(Analyzer):将一段文本,按照一定逻辑,分析成多个词语的一种工具
    • 如:华为手机 — > 华为、手、手机
  • ElasticSearch 内置分词器
    • Standard Analyzer - 默认分词器,按词切分,小写处理
    • Simple Analyzer - 按照非字母切分(符号被过滤), 小写处理
    • Stop Analyzer - 小写处理,停用词过滤(the,a,is)
    • Whitespace Analyzer - 按照空格切分,不转小写
    • Keyword Analyzer - 不分词,直接将输入当作输出
    • Patter Analyzer - 正则表达式,默认\W+(非字符分割)
    • Language - 提供了30多种常见语言的分词器

ElasticSearch 内置分词器对中文很不友好,处理方式为:一个字一个词

IK分词器

  • IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包
  • 是一个基于Maven构建的项目
  • 具有60万字/秒的高速处理能力
  • 支持用户词典扩展定义
  • 下载地址:https://github.com/medcl/elasticsearch-analysis-ik/archive/v7.4.0.zip
# ik 分词器,粗粒度分词器
GET _analyze
{
  "analyzer": "ik_smart",
  "text": "我爱北京天安门"
}
# ik 分词器 ,细粒度分词器
GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "我是程序员"
}

查询文档

词条查询:term

  • 词条查询不会分析查询条件,只有当词条和查询字符串完全匹配时才匹配搜索
# term 词条查询。查询的条件和词条完全匹配
# es 默认使用的分词器是standard,一个字,一个词
GET person/_search
{
  "query": {
    "term": {
      "address": {
        "value": "北"
      }
    }
  }
}

全文查询:match
• 全文查询会分析查询条件,先将查询条件进行分词,然后查询,求并集

# match 先会对查询的字符串进行分词,在查询。求交集
GET person/_search
{
  "query": {
    "match": {
      "address": "重庆午餐"
    }
  }
}

SpringBoot整合ES

  • 应如es版本的坐标
 <dependency>
   <groupId>org.elasticsearch.client</groupId>
       <artifactId>elasticsearch-rest-high-level-client</artifactId>
       <version>7.4.0</version>
   </dependency>
   <dependency>
       <groupId>org.elasticsearch.client</groupId>
       <artifactId>elasticsearch-rest-client</artifactId>
       <version>7.4.0</version>
   </dependency>
   <dependency>
       <groupId>org.elasticsearch</groupId>
       <artifactId>elasticsearch</artifactId>
       <version>7.4.0</version>
</dependency>
  • 配置文件
elasticsearch:
  host: 159.75.102.92
  port: 9200
  • 定义配置类
@Configuration
@ConfigurationProperties(prefix = "elasticsearch")
public class ElasticSearchConfig {

    private String host;
    private int port;

    @Bean
    public RestHighLevelClient client() {
        return new RestHighLevelClient(RestClient.builder(new HttpHost(
                host,
                port,
                "http"
        )));
    }
}

  • 测试
  @Autowired
    private RestHighLevelClient client;
  @Test
    void contextLoads() {
        System.out.println(client);
    }

添加索引

 /**
     * 添加索引
     */
    @Test
    public void testAddIndex() throws IOException {
        //1.使用client获取操作索引对象
        IndicesClient indicesClient = client.indices();
        //2.具体操作,获取返回值
        CreateIndexRequest createRequest = new CreateIndexRequest("itheima");
        CreateIndexResponse response = indicesClient.create(createRequest, RequestOptions.DEFAULT);
        //3.根据返回值判断结果
        System.out.println(response.isAcknowledged());
    }

    @Test
    public void testAddIndexAndMapping() throws IOException {
        //1.使用client获取操作索引对象
        IndicesClient indicesClient = client.indices();
        //2.具体操作,获取返回值
        CreateIndexRequest createRequest = new CreateIndexRequest("itcast");

        //2.1设置mappings
        String mapping="{\n" +
                "      \"properties\" : {\n" +
                "        \"address\" : {\n" +
                "          \"type\" : \"text\",\n" +
                "          \"analyzer\" : \"ik_max_word\"\n" +
                "        },\n" +
                "        \"age\" : {\n" +
                "          \"type\" : \"long\"\n" +
                "        },\n" +
                "        \"name\" : {\n" +
                "          \"type\" : \"keyword\"\n" +
                "        }\n" +
                "      }\n" +
                "    }";
        createRequest.mapping(mapping,XContentType.JSON);

        CreateIndexResponse response = indicesClient.create(createRequest, RequestOptions.DEFAULT);
        //3.根据返回值判断结果
        System.out.println(response.isAcknowledged());
    }

查询索引

    /**
     * 查询索引
     */
    @Test
    public void queryIndex() throws IOException {
        IndicesClient indicesClient = client.indices();
        GetIndexRequest getIndexRequest = new GetIndexRequest("itcast");
        GetIndexResponse response = indicesClient.get(getIndexRequest, RequestOptions.DEFAULT);
        //获取结果
        Map<String, MappingMetaData> mappings = response.getMappings();
        for (String key : mappings.keySet()) {
            System.out.println(key+":"+mappings.get(key).getSourceAsMap());
        }
    }

删除索引

  /**
     * 删除索引
     */
    @Test
    public void deleteIndex() throws IOException {
        IndicesClient indicesClient = client.indices();
        DeleteIndexRequest deleteRequest = new DeleteIndexRequest("itheima");
        AcknowledgedResponse response = indicesClient.delete(deleteRequest, RequestOptions.DEFAULT);
        System.out.println(response.isAcknowledged());
    }

判断索引是否存在

 /**
     * 判断索引是存在
     */
    @Test
    public void existIndex() throws IOException {
        IndicesClient indicesClient = client.indices();
        GetIndexRequest getRequest=new GetIndexRequest("itheima");
        boolean exists = indicesClient.exists(getRequest, RequestOptions.DEFAULT);
        System.out.println(exists);
    }

添加文档

 /**
     * 添加文档,使用map作为数据
     */
    @Test
    public void addDoc() throws IOException {
        //数据对象,map
        Map<String, Object> data = new HashMap<>();
        data.put("address", "重庆");
        data.put("name", "张国荣");
        data.put("age", 20);
        //获取操作文档的对象
        IndexRequest request = new IndexRequest("itcast").id("1").source(data);
        //添加数据,获取结果
        IndexResponse response = client.index(request, RequestOptions.DEFAULT);
        //打印响应结果
        System.out.println(response.getId());
    }
    /**
     * 添加文档,使用对象作为数据
     */
    @Test
    public void addDoc2() throws IOException {
        //数据对象java object
        Person person=new Person();
        person.setId("2");
        person.setAddress("北京");
        person.setAge(33);
        person.setName("张三");
        ObjectMapper objectMapper=new ObjectMapper();
        //将对象转为json
        String data = objectMapper.writeValueAsString(person);
        //获取操作文档的对象
        IndexRequest indexRequest=new IndexRequest("itcast").id(person.getId()).source(data,XContentType.JSON);
        //添加数据,获取结果
        IndexResponse response = client.index(indexRequest, RequestOptions.DEFAULT);
        System.out.println(response.getId());
    }

修改文档

  • 添加文档时,如果id存在则修改,id不存在则添加

查询文档

/**
     * 根据id查询文档
     */
    @Test
    public void testFindById() throws IOException {
        GetRequest getRequest = new GetRequest("itcast", "2");
        GetResponse response = client.get(getRequest, RequestOptions.DEFAULT);
        //获取数据对应的json
        System.out.println(response.getSourceAsString());
    }

删除文档

 /**
     * 根据id删除文档
     */
    @Test
    public void testDeleteDoc() throws IOException {
        DeleteRequest deleteRequest=new DeleteRequest("itcast","2");
        DeleteResponse response = client.delete(deleteRequest, RequestOptions.DEFAULT);
        System.out.println(response.getId());
    }

ElasticSearch高级操作

批量操作-脚本

  • Bulk 批量操作是将文档的增删改查一些列操作,通过一次请求全都做完。减少网络传输次数。
# 批量操作
#1.删除3号记录
#2.添加4记录
#3.修改2号记录名称

POST _bulk
{"delete":{"_index":"person","_id":"3"}}
{"create":{"_index":"person","_id":4}}
{"name":"八号","age":80,"address":"北京"}
{"update":{"_index":"person","_id":"1"}}
{"doc":{"name":"一号"}}

JavaAPI批量操作

	@Autowired
    private RestHighLevelClient client;

    /**
     * 批量操作 bulk
     */
    @Test
    public void testBulk() throws IOException {
        //创建bulkrequest对象
        BulkRequest bulkRequest = new BulkRequest();
        /*
         *  批量操作
         * 1.删除1号记录
         * 2.添加5记录
         * 3.修改2号记录名称
         */
        //添加对应的操作
        //1.删除1号记录
        DeleteRequest deleteRequest = new DeleteRequest("person", "1");
        bulkRequest.add(deleteRequest);

        //2.添加5号记录
        Map<String, Object> map = new HashMap<>();
        map.put("name", "长江五号");
        IndexRequest indexRequest = new IndexRequest("person" ).id("5").source(map);
        bulkRequest.add(indexRequest);

        //3.修改4号记录
        Map<String, Object> map1 = new HashMap<>();
        map.put("name", "诸葛亮");
        UpdateRequest updateRequest = new UpdateRequest("person", "4").doc(map1);
        bulkRequest.add(updateRequest);

        //执行批量操作
        BulkResponse response = client.bulk(bulkRequest, RequestOptions.DEFAULT);
        RestStatus status = response.status();
        System.out.println(status);
    }

将数据库数据导入ES

    /**
     * 批量添加数据
     */
    @Test
    public void importData() throws IOException {
        //1.查询所有的数据
        List<Goods> goodsList = goodsMapper.findAll();
        //2.bulk导入
        BulkRequest bulkRequest = new BulkRequest();
        //3.遍历goodsList,创建IndexRequest添加数据
        for (Goods goods : goodsList) {
            //4.设置spec的 map数据
            goods.setSpec(JSON.parseObject(goods.getSpecStr(), Map.class));
            IndexRequest indexRequest = new IndexRequest("goods");
            indexRequest.id(goods.getId() + "").source(JSON.toJSONString(goods), XContentType.JSON);
            bulkRequest.add(indexRequest);
        }
        client.bulk(bulkRequest,RequestOptions.DEFAULT);
    }

matchAll查询 ->查询所有文档

  • 脚本
# 默认情况下,es一次展示10条数据,通过form和size来控制分页
GET goods/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0,
  "size": 100
}
  • JavaAPI

    /**
     * 查询所有
     * 1.matchAll
     * 2.将查询结果封装为Goods对象,装在到list中
     * 3.分页,默认显示10条
     */
    @Test
    public void testMatchAll() throws IOException {
        //2.构建查询请求对象,指定查询的索引名称
        SearchRequest searchRequest = new SearchRequest("goods");
        //4.创建查询条件器这个对象 SearchSourceBuilder
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        //6.查询条件
        QueryBuilder query = QueryBuilders.matchAllQuery();
        //5.指定查询->查询所有文档
        sourceBuilder.query(query);
        //3.查询条件构建器
        searchRequest.source(sourceBuilder);

        //10.添加分页信息
        sourceBuilder.from(0);
        sourceBuilder.size(100);

        //1.查询,获取查询结果
        SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
        //7.获取命中对象 SearchHits
        SearchHits searchHits = response.getHits();
        //8.获取总记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录为:" + value);
        //9.获取Hits数据 数组
        SearchHit[] hits = searchHits.getHits();
        List<Goods> goodsList = new ArrayList<>();
        for (SearchHit hit : hits) {
            //获取json字符串格式的对象
            String sourceAsString = hit.getSourceAsString();
            //转为java对象
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

term查询—>不会对查询条件进行分词

  • 脚本
#term查询
GET goods/_search
{
  "query": {
    "term": {
      "title": {
        "value": "手机"
      }
    }
  }
}

  • JavaApI
   /**
     * termQuery:词条查询
     */
    @Test
    public void testTermQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        QueryBuilder query = QueryBuilders.termQuery("title", "华为");
        sourceBuilder.query(query);
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:" + value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

match查询

  • 会对查询条件进行分词
  • 然后将分词后的查询条件和词条进行等值匹配
  • 默认取并集(OR)

脚本

# match查询
GET goods/_search
{
  "query": {
    "match": {
      "title": "华为"
    }
  }
}

GET goods/_search
{
  "query": {
    "match": {
      "title": {
        "query": "华为手机",
        "operator": "and"
      }
      
    }
  }
}

JavaAPI

	/**
     * matchQuery:词条查询
     */
    @Test
    public void testMatchQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        MatchQueryBuilder query = QueryBuilders.matchQuery("title", "华为手机");
        query.operator(Operator.AND);
        sourceBuilder.query(query);
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:" + value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

模糊查询

  • wildcard查询:会对查询条件进行分词。还可以使用通配符 ?(任意单个字符) 和 * (0个或多个字符)
  • regexp查询:正则查询
  • prefix查询:前缀查询

脚本

# wildcard查询。 查询条件分词,模糊查询
GET goods/_search
{
  "query": {
    "wildcard": {
      "title": {
        "value": "华*"
      }
    }
  }
}
# regexp查询:正则查询
GET goods/_search
{
  "query": {
    "regexp": {
      "title": "\\w+(.)*"
    }
  }
}
# prefix查询:前缀查询
GET goods/_search
{
  "query": {
    "prefix": {
      "brandName": {
        "value": "三"
      }
    }
  }
}

JavaAPI

/**
     * 模糊查询:WildcardQuery
     */
    @Test
    public void testWildcardQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        WildcardQueryBuilder query = QueryBuilders.wildcardQuery("title", "华为");
        sourceBuilder.query(query);
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:" + value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }
/**
     * 正则查询: RegexpQuery
     */
    @Test
    public void testRegexpQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        RegexpQueryBuilder query = QueryBuilders.regexpQuery("title", "\\w+(.)*");
        sourceBuilder.query(query);
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:" + value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }
    /**
     * 前缀查询: prefixQuery
     */
    @Test
    public void testPrefixQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        PrefixQueryBuilder query = QueryBuilders.prefixQuery("brandName", "三");
        sourceBuilder.query(query);
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:" + value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

范围查询->查找指定字段在指定范围内包含值

  • 脚本
# 范围查询
# 范围查询
GET goods/_search
{
  "query": {
    "range": {
      "price": {
        "gte": 2000,
        "lte": 3000
      }
    }
  },
  "sort": [
    {
      "price": {
      	# 升叙排序
        "order": "asc"
      }
    }
  ]
}
  • JavaAPI
/**
     * 范围查询:rangeQuery
     */
    @Test
    public void testRangeQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        //范围查询
        RangeQueryBuilder query = QueryBuilders.rangeQuery("price");
        //指定下限>=
        query.gte(2000);
        //指定上限<=
        query.lte(3000);
        sourceBuilder.query(query);
        //排序
        sourceBuilder.sort("price", SortOrder.ASC);
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:" + value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

queryString查询

  • 会对查询条件进行分词
  • 然后将分词后的查询条件和词条进行等值匹配
  • 默认取并集(OR)
  • 可以指定多个查询字段

脚本

# queryString 支持 AND 和OR 
GET goods/_search
{
  "query": {
    "query_string": {
      "fields": ["title","categoryName","brandName"],
      "query": "华为AND 手机"
    }
  }
}

# simple_query_string 不支持AND 和OR 
GET goods/_search
{
  "query": {
    "simple_query_string": {
      "fields": ["title","categoryName","brandName"],
      "query": "华为AND 手机"
    }
  }
}

JavaAPI

/**
     * 条件查询: queryString
     */
    @Test
    public void testQueryStringQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        QueryStringQueryBuilder query = QueryBuilders.queryStringQuery("华为手机").field("title").field("categoryName").field("brandName").defaultOperator(Operator.AND);
        sourceBuilder.query(query);
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:" + value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

布尔查询

boolQuery:对多个查询条件连接。连接方式

  • must(and):条件必须成立
  • must_not(not):条件必须不成立
  • should(or):条件可以成立
  • filter:条件必须成立,性能比must高。不会计算得分

脚本

# boolquery -must
GET goods/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "term": {
            "brandName": {
              "value": "三星"
            }
          }
        }
      ],
      "filter": {
        "term": {
          "title": "电视"
        }
      }
    }
  }
}
# boolquery -filter
GET goods/_search
{
  "query": {
    "bool": {
      "filter": {
        "term": {
          "brandName": "华为"
        }
      }
    }
  }
}

JavaAPI

/**
     * 布尔查询:boolQuery
     */
    @Test
    public void testBoolQueryQuery() throws IOException {
        SearchRequest searchRequest = new SearchRequest("goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        //1.构建boolQuery
        BoolQueryBuilder query = QueryBuilders.boolQuery();
        //2.构建各个查询条件
        //2.1 查询品牌名称为:华为
        TermQueryBuilder termQuery = QueryBuilders.termQuery("brandName", "华为");
        query.must(termQuery);
        //2.2查询题目包含手机
        MatchQueryBuilder matchQuery = QueryBuilders.matchQuery("title", "手机");
        query.filter(matchQuery);
        //2.3查询价格在2000-3000
        RangeQueryBuilder rangeQuery = QueryBuilders.rangeQuery("price");
        rangeQuery.gte(2000);
        rangeQuery.lte(3000);
        query.filter(rangeQuery);
        //3.使用boolQuery俩姐
        sourceBuilder.query(query);
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:" + value);
        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);
            goodsList.add(goods);
        }
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }
    }

聚合查询

  • 指标聚合:相当于MySQL的聚合函数。max、min、avg、sum等

脚本

# 聚合查询
# 指标聚合 聚合函数
GET goods/_search
{
  "query": {
    "match": {
      "title": "手机"
    }
  },
  "aggs": {
    "max_price": {
      "max": {
        "field": "price"
      }
    }
  }
}
  • 桶聚合:相当于MySQL的 group by 操作。不要对text类型的数据进行分组,会失败

脚本

# 桶聚合 分组
GET goods/_search
{
  "query": {
    "match": {
      "title": "电视"
    }
  },
  "aggs": {
    "goods_brands": {
      "terms": {
        "field": "brandName",
        "size": 100
      }
    }
  }
}

JavaAPI

 /**
     * 聚合查询:桶聚合,分组查询
     * 1. 查询title包含手机的数据
     * 2. 查询品牌列表
     */
    @Test
    public void testAggQuery() throws IOException {


        SearchRequest searchRequest = new SearchRequest("goods");

        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

        // 1. 查询title包含手机的数据
        MatchQueryBuilder query = QueryBuilders.matchQuery("title", "手机");

        sourceBulider.query(query);

        // 2. 查询品牌列表
        /*
        参数:
            1. 自定义的名称,将来用于获取数据
            2. 分组的字段
         */
        AggregationBuilder agg = AggregationBuilders.terms("goods_brands").field("brandName").size(100);
        sourceBulider.aggregation(agg);



        searchRequest.source(sourceBulider);


        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);


        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);

        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();

            //转为java
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);

            goodsList.add(goods);
        }

        for (Goods goods : goodsList) {
            System.out.println(goods);
        }

        // 获取聚合结果
        Aggregations aggregations = searchResponse.getAggregations();

        Map<String, Aggregation> aggregationMap = aggregations.asMap();

        //System.out.println(aggregationMap);
        Terms goods_brands = (Terms) aggregationMap.get("goods_brands");

        List<? extends Terms.Bucket> buckets = goods_brands.getBuckets();

        List brands = new ArrayList();
        for (Terms.Bucket bucket : buckets) {
            Object key = bucket.getKey();
            brands.add(key);
        }

        for (Object brand : brands) {
            System.out.println(brand);
        }

    }

高亮查询

  • 高亮三要素:
    • 高亮字段
    • 前缀
    • 后缀

脚本

GET goods/_search
{
  "query": {
    "match": {
      "title": "电视"
    }
  },
  "highlight": {
    "fields": {
      "title": {
        "pre_tags" : "<font color='red'>",
        "post_tags": "</font>"
      }
    }
  }
}

JavaAPI

 /**
     *
     * 高亮查询:
     *  1. 设置高亮
     *      * 高亮字段
     *      * 前缀
     *      * 后缀
     *  2. 将高亮了的字段数据,替换原有数据
     */
    @Test
    public void testHighLightQuery() throws IOException {


        SearchRequest searchRequest = new SearchRequest("goods");

        SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

        // 1. 查询title包含手机的数据
        MatchQueryBuilder query = QueryBuilders.matchQuery("title", "手机");

        sourceBulider.query(query);

        //设置高亮
        HighlightBuilder highlighter = new HighlightBuilder();
        //设置三要素
        highlighter.field("title");
        highlighter.preTags("<font color='red'>");
        highlighter.postTags("</font>");


        sourceBulider.highlighter(highlighter);



        // 2. 查询品牌列表
        /*
        参数:
            1. 自定义的名称,将来用于获取数据
            2. 分组的字段
         */
        AggregationBuilder agg = AggregationBuilders.terms("goods_brands").field("brandName").size(100);
        sourceBulider.aggregation(agg);



        searchRequest.source(sourceBulider);


        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);


        SearchHits searchHits = searchResponse.getHits();
        //获取记录数
        long value = searchHits.getTotalHits().value;
        System.out.println("总记录数:"+value);

        List<Goods> goodsList = new ArrayList<>();
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();

            //转为java
            Goods goods = JSON.parseObject(sourceAsString, Goods.class);

            // 获取高亮结果,替换goods中的title
            Map<String, HighlightField> highlightFields = hit.getHighlightFields();
            HighlightField HighlightField = highlightFields.get("title");
            Text[] fragments = HighlightField.fragments();
            //替换
            goods.setTitle(fragments[0].toString());


            goodsList.add(goods);
        }

        for (Goods goods : goodsList) {
            System.out.println(goods);
        }

        // 获取聚合结果
        Aggregations aggregations = searchResponse.getAggregations();

        Map<String, Aggregation> aggregationMap = aggregations.asMap();

        //System.out.println(aggregationMap);
        Terms goods_brands = (Terms) aggregationMap.get("goods_brands");

        List<? extends Terms.Bucket> buckets = goods_brands.getBuckets();

        List brands = new ArrayList();
        for (Terms.Bucket bucket : buckets) {
            Object key = bucket.getKey();
            brands.add(key);
        }

        for (Object brand : brands) {
            System.out.println(brand);
        }

    }

重建索引

  • 随着业务需求的变更,索引的结构可能发生改变
  • ElasticSearch的索引一旦创建,只允许添加字段,不允许改变字段。因为改变字段,需要重建倒排索引,影响内部缓存结构,性能太低
  • 那么此时,就需要重建一个新的索引,并将原有索引的数据导入到新索引中
  • 步骤
    • 先删除老索引名称
    • 新建索引名称,去一个别名为老元素的名臣
      POST 新索引/_alias/老索引
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值