背包问题总结篇

文章总结了背包问题的常见类型,包括01背包和完全背包,强调了确定dp数组、递推公式和遍历顺序在解决问题中的重要性。递推公式如最大价值、装满背包的方法数等,并指出不同背包问题的遍历顺序差异,如01背包的遍历特点和完全背包在求组合数、排列数时的遍历方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背包问题总结篇

常见的背包,其关系如下:

416.分割等和子集1

通过这个图,可以很清晰分清这几种常见背包之间的关系。

在讲解背包问题的时候,都是按照如下五部来逐步分析,把这五部都搞透了,算是对动规来理解深入了。

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

其实这五部里哪一步都很关键,但确定递推公式和确定遍历顺序都具有规律性和代表性。

背包递推公式

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 416 分割等和子集
  • 1049 最后一块石头的重量 II

问装满背包有几种方法:**dp[j] += dp[j - nums[i]] **,对应题目如下:

  • 494 目标和
  • 518 零钱兑换 II
  • 377 组合总和Ⅳ
  • 70 爬楼梯进阶版(完全背包)

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

  • 474 一和零

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

  • 322 零钱兑换
  • 279 完全平方数
遍历顺序

01背包

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的

完全背包

纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

相关题目如下:

  • 求组合数:518 零钱兑换II
  • 求排列数:377 组合总和 Ⅳ、70 爬楼梯进阶版(完全背包)

如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

求最小数:322 零钱兑换、279 完全平方数

对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值