Pytorch手写数字识别LeNet模型

LeNet网络

>>Github链接
在这里插入图片描述
LeNet网络过卷积层时候保持分辨率不变,过池化层时候分辨率变小。实现如下

from PIL import Image
import cv2
import matplotlib.pyplot as plt
import torchvision
from torchvision import transforms
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import numpy as np
import tqdm as tqdm

class LeNet(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.sequential = nn.Sequential(nn.Conv2d(1,6,kernel_size=5,padding=2),nn.Sigmoid(),
                                        nn.AvgPool2d(kernel_size=2,stride=2),
                                        nn.Conv2d(6,16,kernel_size=5),nn.Sigmoid(),
                                        nn.AvgPool2d(kernel_size=2,stride=2),
                                        nn.Flatten(),
                                        nn.Linear(16*25,120),nn.Sigmoid(),
                                        nn.Linear(120,84),nn.Sigmoid(),
                                        nn.Linear(84,10))
        
    
    def forward(self,x):
        return self.sequential(x)

class 
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值