import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
import random
a = list()
b = list()
"""
生成均值为1,方差为2的100个正态分布数据
a.append(np.random.normal(1, 2, 10))
# 生成1~10间的随机整数
a.append(random.randint(1, 10))
# 生成一个包含 10 个介于 1到 2 之间的随机浮点数的数组
a.append(np.random.uniform(1, 2, 10))
"""
a = np.random.normal(5.0, 0.025, 100)
b = np.random.normal(6.0, 0.23, 100)
print(a)
plt.hist(a, 100)
plt.show()
plt.scatter(a, b)
plt.show()
slope, intercept, r, p, std_err = stats.linregress(a, b)
def myfunc(x):
return slope * x + intercept
mymodel = list(map(myfunc, a))
plt.scatter(a, b)
plt.plot(a, mymodel)
plt.show()
x = [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 21, 22]
y = [100, 90, 80, 60, 60, 55, 60, 65, 70, 70, 75, 76, 78, 79, 90, 99, 99, 100]
n = 4
mymodel = np.poly1d(np.polyfit(x, y, n))
myline = np.linspace(1, 22, 100)
plt.scatter(x, y)
plt.plot(myline, mymodel(myline))
plt.show()
print("多项式回归的系数为:", r2_score(y, mymodel(x)))
print("平均数:", format(np.mean(a), ".2f"))
print("中位数:", format(np.median(a), ".2f"))
print("众数为:", format(stats.mode(a)))
print("标准差为:", format(np.std(a), ".2f"))
print("方差为:", format(np.var(a), ".2f"))
print("在5以及5以下的数的占比:", format(np.percentile(a, 5), ".2f"), "%")