HDU1431 素数回文(打表)[C,C++,Java]

题目及翻译

题面

xiaoou33对既是素数又是回文的数特别感兴趣。比如说151既是素数又是个回文。现在xiaoou333想要你帮助他找出某个范围内的素数回文数,请你写个程序找出 a 跟b 之间满足条件的数。(5 <= a < b <= 100,000,000);

输入

这里有许多组数据,每组包括两组数据a跟b

输出

对每一组数据,按从小到大输出a,b之间所有满足条件的素数回文数(包括a跟b)每组数据之后空一行。

输入样例

5 500

输出样例

5
7
11
101
131
151
181
191
313
353
373
383

题目思路

一开始做的时候有思路,但是发现直接筛选法,即使是用bool型来标记,预处理时也会超时。
然后顺理成章的想到了先打表打好再输出,但是陷入了误区,一直在想办法打表题目范围内的素数,没想到直接写完暴力打表整个题目,所以看了这个题解:【点击查看题解】,然后才开窍,虽然总的来说很多部分都很简单,但是这里处理回文数字的方式挺巧妙的,学到了!我一开始也有类似的想法但是代码low得多。
所以题目做法就和题解里差不多:
1.即时计算:打表找范围,然后筛选法获得素数,再寻找回文串判断是否是素数即可。
2.暴力打表:打表直接把带格式的答案打印出来,复制粘贴然后搞就完事了

注意事项

1.对于即时计算来说,筛选法计算素数时,外层for遍历时:
(int i=2;i*i<MAXN;++i)
来代替(int i=2;i<MAXN;++i)
效率会高的多,原因我的素数判断的博客里会写。但是我现在其实还没写素数判断。
2.对于即时计算来说,由于素数比回文串多,所以先找素数再判断回文串效率会低很多,于是要先判断回文串,再判断素数。
3.每组数据后空一行。只看样例真的以为只有一组。。。

解决过程

———WARNING———解决过程可能含有伪代码———WARNING———
———WARNING———使用其中代码请注意修正———WARNING———
按照思路中,首先需要得到范围内所有素数,我用的筛选法,比暴力写起来更方便好记,并且也算很快了:

bool isPrime[100000005];
memset(a,true,100000005);//因为数组名取了isPrime,所以干脆认为 true 判断为素数
void Prime(bool *isPrime){//传入bool型数组
	isPrime[0] = false;
	isPrime[1] = false;
	//众所周知0和1不是素数
	for(int i = 2; i * i < 100000005; ++i) {//筛选法把所有素数的倍数设置为false
		if(isPrime[i] == true) {
			for(int j = i + i; j < 100000005; j += i) {
				isPrime[j] = false;
			}
		}
	}
	return;
};

其次,需要得到一个回文数的判定方式,这里我就不献丑了,直接用看的题解里那种方式:

bool isPlalindrome(int n) {
	int sum = 0;
	int flag = n;
	while (n) {
		sum = sum * 10 + n % 10;//sum从右往左走
		n /= 10;//n从左往右走
	}
	return sum == flag;
	/*
	实现原理:
	1.sum=sum*10+n%10;
		是不断把n的低位往高位进,高位再补到低位,做到从右往左
	2.n/=10;
		是不断把n的低位直接用/号消除,高位会自然下降,做到从左往右
	*/
};

有了两种要求的判断方式后,直接暴力把0到100000005范围内所有值遍历过去,为了方便自己,也方便博客显示,每30个数字增加一次换行。

int flag = 0;
for(int i=0; i<100000005; ++i) {
	if(isPrime[i] == true && isPlalindrome(i) == true) {
		printf("%-7d,",i);
		if(++flag == 30) {
			printf("\n");
			flag = 0;
		}
	}
}

整个打表代码如下(可运行):

#include<stdio.h>
#include<string.h>
bool isPlalindrome(int n) {
	int sum = 0;
	int flag = n;
	while (n) {
		sum = sum * 10 + n % 10;
		n /= 10;
	}
	return sum == flag;
};
void Prime(bool *isPrime) {
	isPrime[0] = false;
	isPrime[1] = false;
	for(int i = 2; i * i < 100000005; ++i) {
		if(isPrime[i] == true) {
			for(int j = i + i; j < 100000005; j += i) {
				isPrime[j] = false;
			}
		}
	}
	return;
};
int main() {
	static bool isPrime[100000005];
	memset(isPrime,true,100000005);
	Prime(isPrime);
	int flag = 0;
	for(int i=0; i<100000005; ++i) {
		if(isPrime[i] == true && isPlalindrome(i) == true) {
			printf("%-7d,",i);//打过一次表后改了一下对齐,更好看。
			if(++flag == 30) {
				printf("\n");
				flag = 0;
			}
		}
	}
	return 0;
}

编译运行后打表得出的数据为:

2      ,3      ,5      ,7      ,11     ,101    ,131    ,151    ,181    ,191    ,313    ,353    ,373    ,383    ,727    ,757    ,787    ,797    ,919    ,929    ,10301  ,10501  ,10601  ,11311  ,11411  ,12421  ,12721  ,12821  ,13331  ,13831  ,
13931  ,14341  ,14741  ,15451  ,15551  ,16061  ,16361  ,16561  ,16661  ,17471  ,17971  ,18181  ,18481  ,19391  ,19891  ,19991  ,30103  ,30203  ,30403  ,30703  ,30803  ,31013  ,31513  ,32323  ,32423  ,33533  ,34543  ,34843  ,35053  ,35153  ,
35353  ,35753  ,36263  ,36563  ,37273  ,37573  ,38083  ,38183  ,38783  ,39293  ,70207  ,70507  ,70607  ,71317  ,71917  ,72227  ,72727  ,73037  ,73237  ,73637  ,74047  ,74747  ,75557  ,76367  ,76667  ,77377  ,77477  ,77977  ,78487  ,78787  ,
78887  ,79397  ,79697  ,79997  ,90709  ,91019  ,93139  ,93239  ,93739  ,94049  ,94349  ,94649  ,94849  ,94949  ,95959  ,96269  ,96469  ,96769  ,97379  ,97579  ,97879  ,98389  ,98689  ,1003001,1008001,1022201,1028201,1035301,1043401,1055501,
1062601,1065601,1074701,1082801,1085801,1092901,1093901,1114111,1117111,1120211,1123211,1126211,1129211,1134311,1145411,1150511,1153511,1160611,1163611,1175711,1177711,1178711,1180811,1183811,1186811,1190911,1193911,1196911,1201021,1208021,
1212121,1215121,1218121,1221221,1235321,1242421,1243421,1245421,1250521,1253521,1257521,1262621,1268621,1273721,1276721,1278721,1280821,1281821,1286821,1287821,1300031,1303031,1311131,1317131,1327231,1328231,1333331,1335331,1338331,1343431,
1360631,1362631,1363631,1371731,1374731,1390931,1407041,1409041,1411141,1412141,1422241,1437341,1444441,1447441,1452541,1456541,1461641,1463641,1464641,1469641,1486841,1489841,1490941,1496941,1508051,1513151,1520251,1532351,1535351,1542451,
1548451,1550551,1551551,1556551,1557551,1565651,1572751,1579751,1580851,1583851,1589851,1594951,1597951,1598951,1600061,1609061,1611161,1616161,1628261,1630361,1633361,1640461,1643461,1646461,1654561,1657561,1658561,1660661,1670761,1684861,
1685861,1688861,1695961,1703071,1707071,1712171,1714171,1730371,1734371,1737371,1748471,1755571,1761671,1764671,1777771,1793971,1802081,1805081,1820281,1823281,1824281,1826281,1829281,1831381,1832381,1842481,1851581,1853581,1856581,1865681,
1876781,1878781,1879781,1880881,1881881,1883881,1884881,1895981,1903091,1908091,1909091,1917191,1924291,1930391,1936391,1941491,1951591,1952591,1957591,1958591,1963691,1968691,1969691,1970791,1976791,1981891,1982891,1984891,1987891,1988891,
1993991,1995991,1998991,3001003,3002003,3007003,3016103,3026203,3064603,3065603,3072703,3073703,3075703,3083803,3089803,3091903,3095903,3103013,3106013,3127213,3135313,3140413,3155513,3158513,3160613,3166613,3181813,3187813,3193913,3196913,
3198913,3211123,3212123,3218123,3222223,3223223,3228223,3233323,3236323,3241423,3245423,3252523,3256523,3258523,3260623,3267623,3272723,3283823,3285823,3286823,3288823,3291923,3293923,3304033,3305033,3307033,3310133,3315133,3319133,3321233,
3329233,3331333,3337333,3343433,3353533,3362633,3364633,3365633,3368633,3380833,3391933,3392933,3400043,3411143,3417143,3424243,3425243,3427243,3439343,3441443,3443443,3444443,3447443,3449443,3452543,3460643,3466643,3470743,3479743,3485843,
3487843,3503053,3515153,3517153,3528253,3541453,3553553,3558553,3563653,3569653,3586853,3589853,3590953,3591953,3594953,3601063,3607063,3618163,3621263,3627263,3635363,3643463,3646463,3670763,3673763,3680863,3689863,3698963,3708073,3709073,
3716173,3717173,3721273,3722273,3728273,3732373,3743473,3746473,3762673,3763673,3765673,3768673,3769673,3773773,3774773,3781873,3784873,3792973,3793973,3799973,3804083,3806083,3812183,3814183,3826283,3829283,3836383,3842483,3853583,3858583,
3863683,3864683,3867683,3869683,3871783,3878783,3893983,3899983,3913193,3916193,3918193,3924293,3927293,3931393,3938393,3942493,3946493,3948493,3964693,3970793,3983893,3991993,3994993,3997993,3998993,7014107,7035307,7036307,7041407,7046407,
7057507,7065607,7069607,7073707,7079707,7082807,7084807,7087807,7093907,7096907,7100017,7114117,7115117,7118117,7129217,7134317,7136317,7141417,7145417,7155517,7156517,7158517,7159517,7177717,7190917,7194917,7215127,7226227,7246427,7249427,
7250527,7256527,7257527,7261627,7267627,7276727,7278727,7291927,7300037,7302037,7310137,7314137,7324237,7327237,7347437,7352537,7354537,7362637,7365637,7381837,7388837,7392937,7401047,7403047,7409047,7415147,7434347,7436347,7439347,7452547,
7461647,7466647,7472747,7475747,7485847,7486847,7489847,7493947,7507057,7508057,7518157,7519157,7521257,7527257,7540457,7562657,7564657,7576757,7586857,7592957,7594957,7600067,7611167,7619167,7622267,7630367,7632367,7644467,7654567,7662667,
7665667,7666667,7668667,7669667,7674767,7681867,7690967,7693967,7696967,7715177,7718177,7722277,7729277,7733377,7742477,7747477,7750577,7758577,7764677,7772777,7774777,7778777,7782877,7783877,7791977,7794977,7807087,7819187,7820287,7821287,
7831387,7832387,7838387,7843487,7850587,7856587,7865687,7867687,7868687,7873787,7884887,7891987,7897987,7913197,7916197,7930397,7933397,7935397,7938397,7941497,7943497,7949497,7957597,7958597,7960697,7977797,7984897,7985897,7987897,7996997,
9002009,9015109,9024209,9037309,9042409,9043409,9045409,9046409,9049409,9067609,9073709,9076709,9078709,9091909,9095909,9103019,9109019,9110119,9127219,9128219,9136319,9149419,9169619,9173719,9174719,9179719,9185819,9196919,9199919,9200029,
9209029,9212129,9217129,9222229,9223229,9230329,9231329,9255529,9269629,9271729,9277729,9280829,9286829,9289829,9318139,9320239,9324239,9329239,9332339,9338339,9351539,9357539,9375739,9384839,9397939,9400049,9414149,9419149,9433349,9439349,
9440449,9446449,9451549,9470749,9477749,9492949,9493949,9495949,9504059,9514159,9526259,9529259,9547459,9556559,9558559,9561659,9577759,9583859,9585859,9586859,9601069,9602069,9604069,9610169,9620269,9624269,9626269,9632369,9634369,9645469,
9650569,9657569,9670769,9686869,9700079,9709079,9711179,9714179,9724279,9727279,9732379,9733379,9743479,9749479,9752579,9754579,9758579,9762679,9770779,9776779,9779779,9781879,9782879,9787879,9788879,9795979,9801089,9807089,9809089,9817189,
9818189,9820289,9822289,9836389,9837389,9845489,9852589,9871789,9888889,9889889,9896989,9902099,9907099,9908099,9916199,9918199,9919199,9921299,9923299,9926299,9927299,9931399,9932399,9935399,9938399,9957599,9965699,9978799,9980899,9981899,
9989899,

很明显,在范围内最大的回文素数是9989899,所以即时计算的代码只需要计算到9989899即可。
对打表的代码稍作修改,即可得出即时计算的AC代码
对打表的代码输出部分改成

for(int i=0; i<100000005; ++i) {
		if(notPrime[i] == true && isPlalindrome(i) == true) {
			printf("N[%-7d] = true;",i);
			if(++flag == 30) {
				printf("\n");
				flag = 0;
			}
		}
	}

就能直接得到赋值代码,随便改改就得到暴力打表代码了。

AC代码

C/C++(几乎没有代码变更)[即时计算]

用时265MS 内存10988KK 长度1099B

#include<stdio.h>
const int MAXN = 9989899 + 5;//通过打表得出的最大值,只需要记录它范围内即可
bool isPlalindrome(int n) {
	int sum = 0;
	int flag = n;
	while (n) {
		sum = sum * 10 + n % 10;//sum从右往左走
		n /= 10;//n从左往右走
	}
	return sum == flag;
};
void Prime(bool *notPrime) {//传入bool型的数组
	notPrime[0] = true;
	notPrime[1] = true;//众所周知0和1不是素数
	for(int i = 2; i * i < MAXN; ++i) {
		if(notPrime[i] == false) {//如果是素数
			for(int j = i + i; j < MAXN; j += i) {//那么它的倍数都不是素数
				notPrime[j] = true;
			}
		}
	}
	return;
};
int main() {
	static bool notPrime[MAXN];//为了效率,把isPrime变成了notPrime
	static int a,b;
	Prime(notPrime);//预处理,筛选法标记所有的素数为false
	while(~scanf("%d %d",&a,&b)) {//循环输入到文件尾 
		if(b > MAXN)b = MAXN;//避免无谓的运算,不加会导致数组超限(RE) 
		for(int i = a; i <= b; ++i) {
			if(isPlalindrome(i) == true && notPrime[i] == false) {
				//[&&]运算符会从左到右判断,先判断回文再判断素数,提高效率
				printf("%d\n",i);
			}
		}
		printf("\n");//每组数据后空一行 
	}
	return 0;
}

C/C++(几乎没有代码变更)[暴力打表]

暴力打表有很多种方法,这里只写我用的这种。
用时15MS 内存10996K 长度14385B

#include<stdio.h>
int main(){
	static bool N[9989899 + 5];
	N[2      ] = true;N[3      ] = true;N[5      ] = true;N[7      ] = true;N[11     ] = true;N[101    ] = true;N[131    ] = true;N[151    ] = true;N[181    ] = true;N[191    ] = true;N[313    ] = true;N[353    ] = true;N[373    ] = true;N[383    ] = true;N[727    ] = true;N[757    ] = true;N[787    ] = true;N[797    ] = true;N[919    ] = true;N[929    ] = true;N[10301  ] = true;N[10501  ] = true;N[10601  ] = true;N[11311  ] = true;N[11411  ] = true;N[12421  ] = true;N[12721  ] = true;N[12821  ] = true;N[13331  ] = true;N[13831  ] = true;
	N[13931  ] = true;N[14341  ] = true;N[14741  ] = true;N[15451  ] = true;N[15551  ] = true;N[16061  ] = true;N[16361  ] = true;N[16561  ] = true;N[16661  ] = true;N[17471  ] = true;N[17971  ] = true;N[18181  ] = true;N[18481  ] = true;N[19391  ] = true;N[19891  ] = true;N[19991  ] = true;N[30103  ] = true;N[30203  ] = true;N[30403  ] = true;N[30703  ] = true;N[30803  ] = true;N[31013  ] = true;N[31513  ] = true;N[32323  ] = true;N[32423  ] = true;N[33533  ] = true;N[34543  ] = true;N[34843  ] = true;N[35053  ] = true;N[35153  ] = true;
	N[35353  ] = true;N[35753  ] = true;N[36263  ] = true;N[36563  ] = true;N[37273  ] = true;N[37573  ] = true;N[38083  ] = true;N[38183  ] = true;N[38783  ] = true;N[39293  ] = true;N[70207  ] = true;N[70507  ] = true;N[70607  ] = true;N[71317  ] = true;N[71917  ] = true;N[72227  ] = true;N[72727  ] = true;N[73037  ] = true;N[73237  ] = true;N[73637  ] = true;N[74047  ] = true;N[74747  ] = true;N[75557  ] = true;N[76367  ] = true;N[76667  ] = true;N[77377  ] = true;N[77477  ] = true;N[77977  ] = true;N[78487  ] = true;N[78787  ] = true;
	N[78887  ] = true;N[79397  ] = true;N[79697  ] = true;N[79997  ] = true;N[90709  ] = true;N[91019  ] = true;N[93139  ] = true;N[93239  ] = true;N[93739  ] = true;N[94049  ] = true;N[94349  ] = true;N[94649  ] = true;N[94849  ] = true;N[94949  ] = true;N[95959  ] = true;N[96269  ] = true;N[96469  ] = true;N[96769  ] = true;N[97379  ] = true;N[97579  ] = true;N[97879  ] = true;N[98389  ] = true;N[98689  ] = true;N[1003001] = true;N[1008001] = true;N[1022201] = true;N[1028201] = true;N[1035301] = true;N[1043401] = true;N[1055501] = true;
	N[1062601] = true;N[1065601] = true;N[1074701] = true;N[1082801] = true;N[1085801] = true;N[1092901] = true;N[1093901] = true;N[1114111] = true;N[1117111] = true;N[1120211] = true;N[1123211] = true;N[1126211] = true;N[1129211] = true;N[1134311] = true;N[1145411] = true;N[1150511] = true;N[1153511] = true;N[1160611] = true;N[1163611] = true;N[1175711] = true;N[1177711] = true;N[1178711] = true;N[1180811] = true;N[1183811] = true;N[1186811] = true;N[1190911] = true;N[1193911] = true;N[1196911] = true;N[1201021] = true;N[1208021] = true;
	N[1212121] = true;N[1215121] = true;N[1218121] = true;N[1221221] = true;N[1235321] = true;N[1242421] = true;N[1243421] = true;N[1245421] = true;N[1250521] = true;N[1253521] = true;N[1257521] = true;N[1262621] = true;N[1268621] = true;N[1273721] = true;N[1276721] = true;N[1278721] = true;N[1280821] = true;N[1281821] = true;N[1286821] = true;N[1287821] = true;N[1300031] = true;N[1303031] = true;N[1311131] = true;N[1317131] = true;N[1327231] = true;N[1328231] = true;N[1333331] = true;N[1335331] = true;N[1338331] = true;N[1343431] = true;
	N[1360631] = true;N[1362631] = true;N[1363631] = true;N[1371731] = true;N[1374731] = true;N[1390931] = true;N[1407041] = true;N[1409041] = true;N[1411141] = true;N[1412141] = true;N[1422241] = true;N[1437341] = true;N[1444441] = true;N[1447441] = true;N[1452541] = true;N[1456541] = true;N[1461641] = true;N[1463641] = true;N[1464641] = true;N[1469641] = true;N[1486841] = true;N[1489841] = true;N[1490941] = true;N[1496941] = true;N[1508051] = true;N[1513151] = true;N[1520251] = true;N[1532351] = true;N[1535351] = true;N[1542451] = true;
	N[1548451] = true;N[1550551] = true;N[1551551] = true;N[1556551] = true;N[1557551] = true;N[1565651] = true;N[1572751] = true;N[1579751] = true;N[1580851] = true;N[1583851] = true;N[1589851] = true;N[1594951] = true;N[1597951] = true;N[1598951] = true;N[1600061] = true;N[1609061] = true;N[1611161] = true;N[1616161] = true;N[1628261] = true;N[1630361] = true;N[1633361] = true;N[1640461] = true;N[1643461] = true;N[1646461] = true;N[1654561] = true;N[1657561] = true;N[1658561] = true;N[1660661] = true;N[1670761] = true;N[1684861] = true;
	N[1685861] = true;N[1688861] = true;N[1695961] = true;N[1703071] = true;N[1707071] = true;N[1712171] = true;N[1714171] = true;N[1730371] = true;N[1734371] = true;N[1737371] = true;N[1748471] = true;N[1755571] = true;N[1761671] = true;N[1764671] = true;N[1777771] = true;N[1793971] = true;N[1802081] = true;N[1805081] = true;N[1820281] = true;N[1823281] = true;N[1824281] = true;N[1826281] = true;N[1829281] = true;N[1831381] = true;N[1832381] = true;N[1842481] = true;N[1851581] = true;N[1853581] = true;N[1856581] = true;N[1865681] = true;
	N[1876781] = true;N[1878781] = true;N[1879781] = true;N[1880881] = true;N[1881881] = true;N[1883881] = true;N[1884881] = true;N[1895981] = true;N[1903091] = true;N[1908091] = true;N[1909091] = true;N[1917191] = true;N[1924291] = true;N[1930391] = true;N[1936391] = true;N[1941491] = true;N[1951591] = true;N[1952591] = true;N[1957591] = true;N[1958591] = true;N[1963691] = true;N[1968691] = true;N[1969691] = true;N[1970791] = true;N[1976791] = true;N[1981891] = true;N[1982891] = true;N[1984891] = true;N[1987891] = true;N[1988891] = true;
	N[1993991] = true;N[1995991] = true;N[1998991] = true;N[3001003] = true;N[3002003] = true;N[3007003] = true;N[3016103] = true;N[3026203] = true;N[3064603] = true;N[3065603] = true;N[3072703] = true;N[3073703] = true;N[3075703] = true;N[3083803] = true;N[3089803] = true;N[3091903] = true;N[3095903] = true;N[3103013] = true;N[3106013] = true;N[3127213] = true;N[3135313] = true;N[3140413] = true;N[3155513] = true;N[3158513] = true;N[3160613] = true;N[3166613] = true;N[3181813] = true;N[3187813] = true;N[3193913] = true;N[3196913] = true;
	N[3198913] = true;N[3211123] = true;N[3212123] = true;N[3218123] = true;N[3222223] = true;N[3223223] = true;N[3228223] = true;N[3233323] = true;N[3236323] = true;N[3241423] = true;N[3245423] = true;N[3252523] = true;N[3256523] = true;N[3258523] = true;N[3260623] = true;N[3267623] = true;N[3272723] = true;N[3283823] = true;N[3285823] = true;N[3286823] = true;N[3288823] = true;N[3291923] = true;N[3293923] = true;N[3304033] = true;N[3305033] = true;N[3307033] = true;N[3310133] = true;N[3315133] = true;N[3319133] = true;N[3321233] = true;
	N[3329233] = true;N[3331333] = true;N[3337333] = true;N[3343433] = true;N[3353533] = true;N[3362633] = true;N[3364633] = true;N[3365633] = true;N[3368633] = true;N[3380833] = true;N[3391933] = true;N[3392933] = true;N[3400043] = true;N[3411143] = true;N[3417143] = true;N[3424243] = true;N[3425243] = true;N[3427243] = true;N[3439343] = true;N[3441443] = true;N[3443443] = true;N[3444443] = true;N[3447443] = true;N[3449443] = true;N[3452543] = true;N[3460643] = true;N[3466643] = true;N[3470743] = true;N[3479743] = true;N[3485843] = true;
	N[3487843] = true;N[3503053] = true;N[3515153] = true;N[3517153] = true;N[3528253] = true;N[3541453] = true;N[3553553] = true;N[3558553] = true;N[3563653] = true;N[3569653] = true;N[3586853] = true;N[3589853] = true;N[3590953] = true;N[3591953] = true;N[3594953] = true;N[3601063] = true;N[3607063] = true;N[3618163] = true;N[3621263] = true;N[3627263] = true;N[3635363] = true;N[3643463] = true;N[3646463] = true;N[3670763] = true;N[3673763] = true;N[3680863] = true;N[3689863] = true;N[3698963] = true;N[3708073] = true;N[3709073] = true;
	N[3716173] = true;N[3717173] = true;N[3721273] = true;N[3722273] = true;N[3728273] = true;N[3732373] = true;N[3743473] = true;N[3746473] = true;N[3762673] = true;N[3763673] = true;N[3765673] = true;N[3768673] = true;N[3769673] = true;N[3773773] = true;N[3774773] = true;N[3781873] = true;N[3784873] = true;N[3792973] = true;N[3793973] = true;N[3799973] = true;N[3804083] = true;N[3806083] = true;N[3812183] = true;N[3814183] = true;N[3826283] = true;N[3829283] = true;N[3836383] = true;N[3842483] = true;N[3853583] = true;N[3858583] = true;
	N[3863683] = true;N[3864683] = true;N[3867683] = true;N[3869683] = true;N[3871783] = true;N[3878783] = true;N[3893983] = true;N[3899983] = true;N[3913193] = true;N[3916193] = true;N[3918193] = true;N[3924293] = true;N[3927293] = true;N[3931393] = true;N[3938393] = true;N[3942493] = true;N[3946493] = true;N[3948493] = true;N[3964693] = true;N[3970793] = true;N[3983893] = true;N[3991993] = true;N[3994993] = true;N[3997993] = true;N[3998993] = true;N[7014107] = true;N[7035307] = true;N[7036307] = true;N[7041407] = true;N[7046407] = true;
	N[7057507] = true;N[7065607] = true;N[7069607] = true;N[7073707] = true;N[7079707] = true;N[7082807] = true;N[7084807] = true;N[7087807] = true;N[7093907] = true;N[7096907] = true;N[7100017] = true;N[7114117] = true;N[7115117] = true;N[7118117] = true;N[7129217] = true;N[7134317] = true;N[7136317] = true;N[7141417] = true;N[7145417] = true;N[7155517] = true;N[7156517] = true;N[7158517] = true;N[7159517] = true;N[7177717] = true;N[7190917] = true;N[7194917] = true;N[7215127] = true;N[7226227] = true;N[7246427] = true;N[7249427] = true;
	N[7250527] = true;N[7256527] = true;N[7257527] = true;N[7261627] = true;N[7267627] = true;N[7276727] = true;N[7278727] = true;N[7291927] = true;N[7300037] = true;N[7302037] = true;N[7310137] = true;N[7314137] = true;N[7324237] = true;N[7327237] = true;N[7347437] = true;N[7352537] = true;N[7354537] = true;N[7362637] = true;N[7365637] = true;N[7381837] = true;N[7388837] = true;N[7392937] = true;N[7401047] = true;N[7403047] = true;N[7409047] = true;N[7415147] = true;N[7434347] = true;N[7436347] = true;N[7439347] = true;N[7452547] = true;
	N[7461647] = true;N[7466647] = true;N[7472747] = true;N[7475747] = true;N[7485847] = true;N[7486847] = true;N[7489847] = true;N[7493947] = true;N[7507057] = true;N[7508057] = true;N[7518157] = true;N[7519157] = true;N[7521257] = true;N[7527257] = true;N[7540457] = true;N[7562657] = true;N[7564657] = true;N[7576757] = true;N[7586857] = true;N[7592957] = true;N[7594957] = true;N[7600067] = true;N[7611167] = true;N[7619167] = true;N[7622267] = true;N[7630367] = true;N[7632367] = true;N[7644467] = true;N[7654567] = true;N[7662667] = true;
	N[7665667] = true;N[7666667] = true;N[7668667] = true;N[7669667] = true;N[7674767] = true;N[7681867] = true;N[7690967] = true;N[7693967] = true;N[7696967] = true;N[7715177] = true;N[7718177] = true;N[7722277] = true;N[7729277] = true;N[7733377] = true;N[7742477] = true;N[7747477] = true;N[7750577] = true;N[7758577] = true;N[7764677] = true;N[7772777] = true;N[7774777] = true;N[7778777] = true;N[7782877] = true;N[7783877] = true;N[7791977] = true;N[7794977] = true;N[7807087] = true;N[7819187] = true;N[7820287] = true;N[7821287] = true;
	N[7831387] = true;N[7832387] = true;N[7838387] = true;N[7843487] = true;N[7850587] = true;N[7856587] = true;N[7865687] = true;N[7867687] = true;N[7868687] = true;N[7873787] = true;N[7884887] = true;N[7891987] = true;N[7897987] = true;N[7913197] = true;N[7916197] = true;N[7930397] = true;N[7933397] = true;N[7935397] = true;N[7938397] = true;N[7941497] = true;N[7943497] = true;N[7949497] = true;N[7957597] = true;N[7958597] = true;N[7960697] = true;N[7977797] = true;N[7984897] = true;N[7985897] = true;N[7987897] = true;N[7996997] = true;
	N[9002009] = true;N[9015109] = true;N[9024209] = true;N[9037309] = true;N[9042409] = true;N[9043409] = true;N[9045409] = true;N[9046409] = true;N[9049409] = true;N[9067609] = true;N[9073709] = true;N[9076709] = true;N[9078709] = true;N[9091909] = true;N[9095909] = true;N[9103019] = true;N[9109019] = true;N[9110119] = true;N[9127219] = true;N[9128219] = true;N[9136319] = true;N[9149419] = true;N[9169619] = true;N[9173719] = true;N[9174719] = true;N[9179719] = true;N[9185819] = true;N[9196919] = true;N[9199919] = true;N[9200029] = true;
	N[9209029] = true;N[9212129] = true;N[9217129] = true;N[9222229] = true;N[9223229] = true;N[9230329] = true;N[9231329] = true;N[9255529] = true;N[9269629] = true;N[9271729] = true;N[9277729] = true;N[9280829] = true;N[9286829] = true;N[9289829] = true;N[9318139] = true;N[9320239] = true;N[9324239] = true;N[9329239] = true;N[9332339] = true;N[9338339] = true;N[9351539] = true;N[9357539] = true;N[9375739] = true;N[9384839] = true;N[9397939] = true;N[9400049] = true;N[9414149] = true;N[9419149] = true;N[9433349] = true;N[9439349] = true;
	N[9440449] = true;N[9446449] = true;N[9451549] = true;N[9470749] = true;N[9477749] = true;N[9492949] = true;N[9493949] = true;N[9495949] = true;N[9504059] = true;N[9514159] = true;N[9526259] = true;N[9529259] = true;N[9547459] = true;N[9556559] = true;N[9558559] = true;N[9561659] = true;N[9577759] = true;N[9583859] = true;N[9585859] = true;N[9586859] = true;N[9601069] = true;N[9602069] = true;N[9604069] = true;N[9610169] = true;N[9620269] = true;N[9624269] = true;N[9626269] = true;N[9632369] = true;N[9634369] = true;N[9645469] = true;
	N[9650569] = true;N[9657569] = true;N[9670769] = true;N[9686869] = true;N[9700079] = true;N[9709079] = true;N[9711179] = true;N[9714179] = true;N[9724279] = true;N[9727279] = true;N[9732379] = true;N[9733379] = true;N[9743479] = true;N[9749479] = true;N[9752579] = true;N[9754579] = true;N[9758579] = true;N[9762679] = true;N[9770779] = true;N[9776779] = true;N[9779779] = true;N[9781879] = true;N[9782879] = true;N[9787879] = true;N[9788879] = true;N[9795979] = true;N[9801089] = true;N[9807089] = true;N[9809089] = true;N[9817189] = true;
	N[9818189] = true;N[9820289] = true;N[9822289] = true;N[9836389] = true;N[9837389] = true;N[9845489] = true;N[9852589] = true;N[9871789] = true;N[9888889] = true;N[9889889] = true;N[9896989] = true;N[9902099] = true;N[9907099] = true;N[9908099] = true;N[9916199] = true;N[9918199] = true;N[9919199] = true;N[9921299] = true;N[9923299] = true;N[9926299] = true;N[9927299] = true;N[9931399] = true;N[9932399] = true;N[9935399] = true;N[9938399] = true;N[9957599] = true;N[9965699] = true;N[9978799] = true;N[9980899] = true;N[9981899] = true;
	N[9989899] = true;
	static int a,b;
	while(~scanf("%d %d",&a,&b)){
		if(b > 9989899)b = 9989899;//避免无谓的运算,不加会导致数组超限(RE)
		for(int i = a; i <= b; ++i)
			if(N[i] == true)printf("%d\n",i);
		printf("\n");
	}
	return 0;
}

Java[即时计算]

用时1248MS 内存19924K 长度1643B

import java.util.Scanner;

public class Main {
    public static Scanner sc = new Scanner(System.in);
    public static final int MAXN = 9989899 + 5;
    //通过打表得出的最大值,只需要记录它范围内即可
    public static boolean isPlalindrome(int n) {
        int sum = 0;
        int flag = n;
        while (n > 0) {
            sum = sum * 10 + n % 10;//sum从右往左走
            n /= 10;//n从左往右走
        }
        return sum == flag;
    }
    public static void Prime(boolean[] notPrime) {//传入bool型的数组
        notPrime[0] = true;
        notPrime[1] = true;//众所周知0和1不是素数
        for(int i = 2; i * i < MAXN; ++i) {
            if(notPrime[i] == false) {//如果是素数
                for(int j = i + i; j < MAXN; j += i) {//那么它的倍数都不是素数
                    notPrime[j] = true;
                }
            }
        }
        return;
    }
    public static void main(String[] args) {
        boolean[] notPrime = new boolean[MAXN];//为了效率,把isPrime变成了notPrime
        int a,b;
        Prime(notPrime);//预处理,筛选法标记所有的素数为false
        while(sc.hasNext()) {//循环输入到文件尾
            a = sc.nextInt();
            b = sc.nextInt();
            if(b > 9989899)b = 9989899;//避免无谓的运算,不加会导致数组超限(JAVA这里会WA)
            for(int i = a; i <= b; ++i) {
                if(isPlalindrome(i) == true && notPrime[i] == false) {
                    //[&&]运算符会从左到右判断,先判断回文再判断素数,提高效率
                    System.out.printf("%d%n",i);
                }
            }
            System.out.println();//每组数据后空一行
        }
    }
}

Java[暴力打表]

暴力打表有很多种方法,这里只写我用的这种。
时间358MS 内存19988K 长度15054B

import java.util.Scanner;

public class Main {
    public static Scanner sc = new Scanner(System.in);
    public static final int MAXN = 9989899 + 5;//通过打表得出的最大值,只需要记录它范围内即可
    public static void main(String[] args) throws ArrayIndexOutOfBoundsException{
        boolean[] N = new boolean[MAXN];
        N[2      ] = true;N[3      ] = true;N[5      ] = true;N[7      ] = true;N[11     ] = true;N[101    ] = true;N[131    ] = true;N[151    ] = true;N[181    ] = true;N[191    ] = true;N[313    ] = true;N[353    ] = true;N[373    ] = true;N[383    ] = true;N[727    ] = true;N[757    ] = true;N[787    ] = true;N[797    ] = true;N[919    ] = true;N[929    ] = true;N[10301  ] = true;N[10501  ] = true;N[10601  ] = true;N[11311  ] = true;N[11411  ] = true;N[12421  ] = true;N[12721  ] = true;N[12821  ] = true;N[13331  ] = true;N[13831  ] = true;
        N[13931  ] = true;N[14341  ] = true;N[14741  ] = true;N[15451  ] = true;N[15551  ] = true;N[16061  ] = true;N[16361  ] = true;N[16561  ] = true;N[16661  ] = true;N[17471  ] = true;N[17971  ] = true;N[18181  ] = true;N[18481  ] = true;N[19391  ] = true;N[19891  ] = true;N[19991  ] = true;N[30103  ] = true;N[30203  ] = true;N[30403  ] = true;N[30703  ] = true;N[30803  ] = true;N[31013  ] = true;N[31513  ] = true;N[32323  ] = true;N[32423  ] = true;N[33533  ] = true;N[34543  ] = true;N[34843  ] = true;N[35053  ] = true;N[35153  ] = true;
        N[35353  ] = true;N[35753  ] = true;N[36263  ] = true;N[36563  ] = true;N[37273  ] = true;N[37573  ] = true;N[38083  ] = true;N[38183  ] = true;N[38783  ] = true;N[39293  ] = true;N[70207  ] = true;N[70507  ] = true;N[70607  ] = true;N[71317  ] = true;N[71917  ] = true;N[72227  ] = true;N[72727  ] = true;N[73037  ] = true;N[73237  ] = true;N[73637  ] = true;N[74047  ] = true;N[74747  ] = true;N[75557  ] = true;N[76367  ] = true;N[76667  ] = true;N[77377  ] = true;N[77477  ] = true;N[77977  ] = true;N[78487  ] = true;N[78787  ] = true;
        N[78887  ] = true;N[79397  ] = true;N[79697  ] = true;N[79997  ] = true;N[90709  ] = true;N[91019  ] = true;N[93139  ] = true;N[93239  ] = true;N[93739  ] = true;N[94049  ] = true;N[94349  ] = true;N[94649  ] = true;N[94849  ] = true;N[94949  ] = true;N[95959  ] = true;N[96269  ] = true;N[96469  ] = true;N[96769  ] = true;N[97379  ] = true;N[97579  ] = true;N[97879  ] = true;N[98389  ] = true;N[98689  ] = true;N[1003001] = true;N[1008001] = true;N[1022201] = true;N[1028201] = true;N[1035301] = true;N[1043401] = true;N[1055501] = true;
        N[1062601] = true;N[1065601] = true;N[1074701] = true;N[1082801] = true;N[1085801] = true;N[1092901] = true;N[1093901] = true;N[1114111] = true;N[1117111] = true;N[1120211] = true;N[1123211] = true;N[1126211] = true;N[1129211] = true;N[1134311] = true;N[1145411] = true;N[1150511] = true;N[1153511] = true;N[1160611] = true;N[1163611] = true;N[1175711] = true;N[1177711] = true;N[1178711] = true;N[1180811] = true;N[1183811] = true;N[1186811] = true;N[1190911] = true;N[1193911] = true;N[1196911] = true;N[1201021] = true;N[1208021] = true;
        N[1212121] = true;N[1215121] = true;N[1218121] = true;N[1221221] = true;N[1235321] = true;N[1242421] = true;N[1243421] = true;N[1245421] = true;N[1250521] = true;N[1253521] = true;N[1257521] = true;N[1262621] = true;N[1268621] = true;N[1273721] = true;N[1276721] = true;N[1278721] = true;N[1280821] = true;N[1281821] = true;N[1286821] = true;N[1287821] = true;N[1300031] = true;N[1303031] = true;N[1311131] = true;N[1317131] = true;N[1327231] = true;N[1328231] = true;N[1333331] = true;N[1335331] = true;N[1338331] = true;N[1343431] = true;
        N[1360631] = true;N[1362631] = true;N[1363631] = true;N[1371731] = true;N[1374731] = true;N[1390931] = true;N[1407041] = true;N[1409041] = true;N[1411141] = true;N[1412141] = true;N[1422241] = true;N[1437341] = true;N[1444441] = true;N[1447441] = true;N[1452541] = true;N[1456541] = true;N[1461641] = true;N[1463641] = true;N[1464641] = true;N[1469641] = true;N[1486841] = true;N[1489841] = true;N[1490941] = true;N[1496941] = true;N[1508051] = true;N[1513151] = true;N[1520251] = true;N[1532351] = true;N[1535351] = true;N[1542451] = true;
        N[1548451] = true;N[1550551] = true;N[1551551] = true;N[1556551] = true;N[1557551] = true;N[1565651] = true;N[1572751] = true;N[1579751] = true;N[1580851] = true;N[1583851] = true;N[1589851] = true;N[1594951] = true;N[1597951] = true;N[1598951] = true;N[1600061] = true;N[1609061] = true;N[1611161] = true;N[1616161] = true;N[1628261] = true;N[1630361] = true;N[1633361] = true;N[1640461] = true;N[1643461] = true;N[1646461] = true;N[1654561] = true;N[1657561] = true;N[1658561] = true;N[1660661] = true;N[1670761] = true;N[1684861] = true;
        N[1685861] = true;N[1688861] = true;N[1695961] = true;N[1703071] = true;N[1707071] = true;N[1712171] = true;N[1714171] = true;N[1730371] = true;N[1734371] = true;N[1737371] = true;N[1748471] = true;N[1755571] = true;N[1761671] = true;N[1764671] = true;N[1777771] = true;N[1793971] = true;N[1802081] = true;N[1805081] = true;N[1820281] = true;N[1823281] = true;N[1824281] = true;N[1826281] = true;N[1829281] = true;N[1831381] = true;N[1832381] = true;N[1842481] = true;N[1851581] = true;N[1853581] = true;N[1856581] = true;N[1865681] = true;
        N[1876781] = true;N[1878781] = true;N[1879781] = true;N[1880881] = true;N[1881881] = true;N[1883881] = true;N[1884881] = true;N[1895981] = true;N[1903091] = true;N[1908091] = true;N[1909091] = true;N[1917191] = true;N[1924291] = true;N[1930391] = true;N[1936391] = true;N[1941491] = true;N[1951591] = true;N[1952591] = true;N[1957591] = true;N[1958591] = true;N[1963691] = true;N[1968691] = true;N[1969691] = true;N[1970791] = true;N[1976791] = true;N[1981891] = true;N[1982891] = true;N[1984891] = true;N[1987891] = true;N[1988891] = true;
        N[1993991] = true;N[1995991] = true;N[1998991] = true;N[3001003] = true;N[3002003] = true;N[3007003] = true;N[3016103] = true;N[3026203] = true;N[3064603] = true;N[3065603] = true;N[3072703] = true;N[3073703] = true;N[3075703] = true;N[3083803] = true;N[3089803] = true;N[3091903] = true;N[3095903] = true;N[3103013] = true;N[3106013] = true;N[3127213] = true;N[3135313] = true;N[3140413] = true;N[3155513] = true;N[3158513] = true;N[3160613] = true;N[3166613] = true;N[3181813] = true;N[3187813] = true;N[3193913] = true;N[3196913] = true;
        N[3198913] = true;N[3211123] = true;N[3212123] = true;N[3218123] = true;N[3222223] = true;N[3223223] = true;N[3228223] = true;N[3233323] = true;N[3236323] = true;N[3241423] = true;N[3245423] = true;N[3252523] = true;N[3256523] = true;N[3258523] = true;N[3260623] = true;N[3267623] = true;N[3272723] = true;N[3283823] = true;N[3285823] = true;N[3286823] = true;N[3288823] = true;N[3291923] = true;N[3293923] = true;N[3304033] = true;N[3305033] = true;N[3307033] = true;N[3310133] = true;N[3315133] = true;N[3319133] = true;N[3321233] = true;
        N[3329233] = true;N[3331333] = true;N[3337333] = true;N[3343433] = true;N[3353533] = true;N[3362633] = true;N[3364633] = true;N[3365633] = true;N[3368633] = true;N[3380833] = true;N[3391933] = true;N[3392933] = true;N[3400043] = true;N[3411143] = true;N[3417143] = true;N[3424243] = true;N[3425243] = true;N[3427243] = true;N[3439343] = true;N[3441443] = true;N[3443443] = true;N[3444443] = true;N[3447443] = true;N[3449443] = true;N[3452543] = true;N[3460643] = true;N[3466643] = true;N[3470743] = true;N[3479743] = true;N[3485843] = true;
        N[3487843] = true;N[3503053] = true;N[3515153] = true;N[3517153] = true;N[3528253] = true;N[3541453] = true;N[3553553] = true;N[3558553] = true;N[3563653] = true;N[3569653] = true;N[3586853] = true;N[3589853] = true;N[3590953] = true;N[3591953] = true;N[3594953] = true;N[3601063] = true;N[3607063] = true;N[3618163] = true;N[3621263] = true;N[3627263] = true;N[3635363] = true;N[3643463] = true;N[3646463] = true;N[3670763] = true;N[3673763] = true;N[3680863] = true;N[3689863] = true;N[3698963] = true;N[3708073] = true;N[3709073] = true;
        N[3716173] = true;N[3717173] = true;N[3721273] = true;N[3722273] = true;N[3728273] = true;N[3732373] = true;N[3743473] = true;N[3746473] = true;N[3762673] = true;N[3763673] = true;N[3765673] = true;N[3768673] = true;N[3769673] = true;N[3773773] = true;N[3774773] = true;N[3781873] = true;N[3784873] = true;N[3792973] = true;N[3793973] = true;N[3799973] = true;N[3804083] = true;N[3806083] = true;N[3812183] = true;N[3814183] = true;N[3826283] = true;N[3829283] = true;N[3836383] = true;N[3842483] = true;N[3853583] = true;N[3858583] = true;
        N[3863683] = true;N[3864683] = true;N[3867683] = true;N[3869683] = true;N[3871783] = true;N[3878783] = true;N[3893983] = true;N[3899983] = true;N[3913193] = true;N[3916193] = true;N[3918193] = true;N[3924293] = true;N[3927293] = true;N[3931393] = true;N[3938393] = true;N[3942493] = true;N[3946493] = true;N[3948493] = true;N[3964693] = true;N[3970793] = true;N[3983893] = true;N[3991993] = true;N[3994993] = true;N[3997993] = true;N[3998993] = true;N[7014107] = true;N[7035307] = true;N[7036307] = true;N[7041407] = true;N[7046407] = true;
        N[7057507] = true;N[7065607] = true;N[7069607] = true;N[7073707] = true;N[7079707] = true;N[7082807] = true;N[7084807] = true;N[7087807] = true;N[7093907] = true;N[7096907] = true;N[7100017] = true;N[7114117] = true;N[7115117] = true;N[7118117] = true;N[7129217] = true;N[7134317] = true;N[7136317] = true;N[7141417] = true;N[7145417] = true;N[7155517] = true;N[7156517] = true;N[7158517] = true;N[7159517] = true;N[7177717] = true;N[7190917] = true;N[7194917] = true;N[7215127] = true;N[7226227] = true;N[7246427] = true;N[7249427] = true;
        N[7250527] = true;N[7256527] = true;N[7257527] = true;N[7261627] = true;N[7267627] = true;N[7276727] = true;N[7278727] = true;N[7291927] = true;N[7300037] = true;N[7302037] = true;N[7310137] = true;N[7314137] = true;N[7324237] = true;N[7327237] = true;N[7347437] = true;N[7352537] = true;N[7354537] = true;N[7362637] = true;N[7365637] = true;N[7381837] = true;N[7388837] = true;N[7392937] = true;N[7401047] = true;N[7403047] = true;N[7409047] = true;N[7415147] = true;N[7434347] = true;N[7436347] = true;N[7439347] = true;N[7452547] = true;
        N[7461647] = true;N[7466647] = true;N[7472747] = true;N[7475747] = true;N[7485847] = true;N[7486847] = true;N[7489847] = true;N[7493947] = true;N[7507057] = true;N[7508057] = true;N[7518157] = true;N[7519157] = true;N[7521257] = true;N[7527257] = true;N[7540457] = true;N[7562657] = true;N[7564657] = true;N[7576757] = true;N[7586857] = true;N[7592957] = true;N[7594957] = true;N[7600067] = true;N[7611167] = true;N[7619167] = true;N[7622267] = true;N[7630367] = true;N[7632367] = true;N[7644467] = true;N[7654567] = true;N[7662667] = true;
        N[7665667] = true;N[7666667] = true;N[7668667] = true;N[7669667] = true;N[7674767] = true;N[7681867] = true;N[7690967] = true;N[7693967] = true;N[7696967] = true;N[7715177] = true;N[7718177] = true;N[7722277] = true;N[7729277] = true;N[7733377] = true;N[7742477] = true;N[7747477] = true;N[7750577] = true;N[7758577] = true;N[7764677] = true;N[7772777] = true;N[7774777] = true;N[7778777] = true;N[7782877] = true;N[7783877] = true;N[7791977] = true;N[7794977] = true;N[7807087] = true;N[7819187] = true;N[7820287] = true;N[7821287] = true;
        N[7831387] = true;N[7832387] = true;N[7838387] = true;N[7843487] = true;N[7850587] = true;N[7856587] = true;N[7865687] = true;N[7867687] = true;N[7868687] = true;N[7873787] = true;N[7884887] = true;N[7891987] = true;N[7897987] = true;N[7913197] = true;N[7916197] = true;N[7930397] = true;N[7933397] = true;N[7935397] = true;N[7938397] = true;N[7941497] = true;N[7943497] = true;N[7949497] = true;N[7957597] = true;N[7958597] = true;N[7960697] = true;N[7977797] = true;N[7984897] = true;N[7985897] = true;N[7987897] = true;N[7996997] = true;
        N[9002009] = true;N[9015109] = true;N[9024209] = true;N[9037309] = true;N[9042409] = true;N[9043409] = true;N[9045409] = true;N[9046409] = true;N[9049409] = true;N[9067609] = true;N[9073709] = true;N[9076709] = true;N[9078709] = true;N[9091909] = true;N[9095909] = true;N[9103019] = true;N[9109019] = true;N[9110119] = true;N[9127219] = true;N[9128219] = true;N[9136319] = true;N[9149419] = true;N[9169619] = true;N[9173719] = true;N[9174719] = true;N[9179719] = true;N[9185819] = true;N[9196919] = true;N[9199919] = true;N[9200029] = true;
        N[9209029] = true;N[9212129] = true;N[9217129] = true;N[9222229] = true;N[9223229] = true;N[9230329] = true;N[9231329] = true;N[9255529] = true;N[9269629] = true;N[9271729] = true;N[9277729] = true;N[9280829] = true;N[9286829] = true;N[9289829] = true;N[9318139] = true;N[9320239] = true;N[9324239] = true;N[9329239] = true;N[9332339] = true;N[9338339] = true;N[9351539] = true;N[9357539] = true;N[9375739] = true;N[9384839] = true;N[9397939] = true;N[9400049] = true;N[9414149] = true;N[9419149] = true;N[9433349] = true;N[9439349] = true;
        N[9440449] = true;N[9446449] = true;N[9451549] = true;N[9470749] = true;N[9477749] = true;N[9492949] = true;N[9493949] = true;N[9495949] = true;N[9504059] = true;N[9514159] = true;N[9526259] = true;N[9529259] = true;N[9547459] = true;N[9556559] = true;N[9558559] = true;N[9561659] = true;N[9577759] = true;N[9583859] = true;N[9585859] = true;N[9586859] = true;N[9601069] = true;N[9602069] = true;N[9604069] = true;N[9610169] = true;N[9620269] = true;N[9624269] = true;N[9626269] = true;N[9632369] = true;N[9634369] = true;N[9645469] = true;
        N[9650569] = true;N[9657569] = true;N[9670769] = true;N[9686869] = true;N[9700079] = true;N[9709079] = true;N[9711179] = true;N[9714179] = true;N[9724279] = true;N[9727279] = true;N[9732379] = true;N[9733379] = true;N[9743479] = true;N[9749479] = true;N[9752579] = true;N[9754579] = true;N[9758579] = true;N[9762679] = true;N[9770779] = true;N[9776779] = true;N[9779779] = true;N[9781879] = true;N[9782879] = true;N[9787879] = true;N[9788879] = true;N[9795979] = true;N[9801089] = true;N[9807089] = true;N[9809089] = true;N[9817189] = true;
        N[9818189] = true;N[9820289] = true;N[9822289] = true;N[9836389] = true;N[9837389] = true;N[9845489] = true;N[9852589] = true;N[9871789] = true;N[9888889] = true;N[9889889] = true;N[9896989] = true;N[9902099] = true;N[9907099] = true;N[9908099] = true;N[9916199] = true;N[9918199] = true;N[9919199] = true;N[9921299] = true;N[9923299] = true;N[9926299] = true;N[9927299] = true;N[9931399] = true;N[9932399] = true;N[9935399] = true;N[9938399] = true;N[9957599] = true;N[9965699] = true;N[9978799] = true;N[9980899] = true;N[9981899] = true;
        N[9989899] = true;
        int a,b;
        while(sc.hasNext()) {//循环输入到文件尾
            a = sc.nextInt();
            b = sc.nextInt();
            if(b > 9989899)b = 9989899;//避免无谓的运算,不加会导致数组超限(JAVA这里会WA)
            for(int i = a; i < b + 1; ++i)
                if(N[i] == true)System.out.printf("%d%n",i);
            System.out.println();//每组数据后空一行
        }
    }
}

本文作者 优快云@扶她小藜
个人主页链接 https://blog.youkuaiyun.com/weixin_44579869

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值