
【学习记录】读论文
文章平均质量分 90
【学习记录】读论文
tempadminuser
●○●○● 注 : 此帐号的博文仅用作个人笔记记录。
浏览时主页的文章列表较杂乱 , 可通过"专栏"浏览
展开
-
【论文记录】Membership Inference Attacks Against Machine Learning Models
Introduction本文主要贡献 : quantify membership information leakage through the prediction outputs of machine learning models.方法 : turn machine learning against itself and train an attack model原创 2020-07-04 10:40:58 · 2162 阅读 · 0 评论 -
【论文记录】Advances and Open Problems in Federated Learning
RefKairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., … & d’Oliveira, R. G. (2019). Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977...原创 2020-02-16 10:40:33 · 716 阅读 · 0 评论 -
【基础储备】Differential Privacy 基础知识储备
k-anonymity 、k-map 、l-diversity 、δ-presence 的介绍原创 2020-06-30 18:21:54 · 658 阅读 · 0 评论 -
【基础储备】Differential Privacy 基础知识储备之 privacy book
加性切诺夫界、乘性切诺夫界 :Azuma不等式 :斯特林公式 :斯特林公式 :斯特林公式 :斯特林公式 :斯特林公式 :斯特林公式 :...原创 2020-02-01 13:25:47 · 672 阅读 · 0 评论 -
关于差分隐私的几个链接 + 部分学习资源
满足差分隐私的经验误差最小化方法原创 2020-01-26 15:09:33 · 579 阅读 · 0 评论 -
【论文记录】Stochastic gradient descent with differentially private updates
标题原创 2020-01-29 19:36:22 · 1043 阅读 · 2 评论 -
【论文记录】Deep Learning with Differential Privacy
标题原创 2020-01-23 21:35:00 · 3036 阅读 · 7 评论 -
【论文记录】Renyi Differential Privacy
II. DIFFERENTIAL PRIVACY AND ITS FLAVORS讨论各个差分隐私机制的优缺点原创 2020-02-05 23:59:33 · 3581 阅读 · 0 评论 -
【论文记录】Adaptive Clipping for Private SGD
Differential privacy for machine learning models can be obtained in four ways: input perturbation, output perturbation, objective perturbation, and change in optimization algorithm.原创 2020-03-06 11:16:52 · 790 阅读 · 3 评论 -
【论文记录】Input Perturbation: A New Paradigm between Central and Local Differential Privacy
标题原创 2020-04-07 23:04:19 · 399 阅读 · 0 评论 -
【论文记录】Differentially Private Empirical Risk Minimization with Input Perturbation
Problem Definition and Preliminaryprivacy concernsdata privacy : when the data contributors release their own data to the databasemodel privacy : when the database publishes the learned model to t...原创 2020-02-15 11:37:34 · 618 阅读 · 0 评论 -
【论文记录】Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds
记录几条疑问Introduction主要工作简介:原创 2020-01-30 21:56:33 · 348 阅读 · 0 评论 -
【论文记录】小应用
补充知识 : meta-path \quad\quad\quad\,\,\,\,\, Graph Embedding 之 metapath2vec场景 : Attackers create fake accounts and interact with target users. (in order to dig out the user’s friend lists or social graph)攻克点 : although differential privacy has g..原创 2020-05-11 09:52:28 · 305 阅读 · 0 评论