1094 The Largest Generation (25 分)
A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.
Input Specification:
Each input file contains one test case. Each case starts with two positive integers N (<100) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<N) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:
ID K ID[1] ID[2] ... ID[K]
where ID
is a two-digit number representing a family member, K
(>0) is the number of his/her children, followed by a sequence of two-digit ID
's of his/her children. For the sake of simplicity, let us fix the root ID
to be 01
. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.
Sample Input:
23 13
21 1 23
01 4 03 02 04 05
03 3 06 07 08
06 2 12 13
13 1 21
08 2 15 16
02 2 09 10
11 2 19 20
17 1 22
05 1 11
07 1 14
09 1 17
10 1 18
Sample Output:
9 4
题目大意:一个家族里面的人的ID编号是从01到N,每个人有若干个孩子,形成一棵族谱树,同一层的人是同辈关系,找出人数最多的那一层并且输出该层的人数。
思路:层序遍历(BFS思想)标记每个人所在的层数,另开一个数组 ans[level] = num 用于映射层数和人数的关系,树遍历完成后再遍历ans数组就能找到人数最多的那一层。
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
struct node {
int level = 0;
vector<int> child;
};
vector<node> tree;
vector<int> ans;
void getLevel();
int main()
{
int N, M, ID, K;
scanf("%d%d", &N, &M);
tree.resize(N + 1);
ans.resize(N + 1, 0);
for (int i = 0; i < M; i++) {
scanf("%d%d", &ID, &K);
tree[ID].child.resize(K);
for (int j = 0; j < K; j++)
scanf("%d", &tree[ID].child[j]);
}
getLevel();
int level = 0, num = 0;
for (int i = 0; i < ans.size(); i++) {
if (num < ans[i]) {
num = ans[i];
level = i;
}
}
printf("%d %d\n", num, level);
return 0;
}
void getLevel() {
int ID = 1;
queue<int> Q;
tree[ID].level = 1;
Q.push(ID);
while (!Q.empty()) {
ID = Q.front();
ans[tree[ID].level]++;
Q.pop();
int childID;
for (int i = 0; i < tree[ID].child.size(); i++) {
childID = tree[ID].child[i];
tree[childID].level = tree[ID].level + 1;
Q.push(childID);
}
}
}