泛函与泛函极值问题
平面内两点A,B,连接两点之间的曲线有很多种方式。分别用函数fi(x)f_{i}(x)fi(x)来表示。对于给定的曲线fi(x)f_{i}(x)fi(x), 那么两点之间连线的长度可以表示为
J(fi(x))=∫AB1+fi′(x)2dxJ(f_{i}(x))=\int\limits_{A}^B\sqrt{1+f'_{i}(x)^2}dxJ(fi(x))=A∫B1+fi′(x)2dx
这里JJJ是函数fff的函数,又叫泛函。通过求JJJ的极值,求得对应的f(x)f(x)f(x),就是泛函的极值问题。求泛函极值问题常用的方法就是变分法。
变分法和欧拉-拉格朗日方程
考虑泛函(functional)常见形式
J=∫x1x2F(x,y(x),y′(x))dxJ=\int\limits_{x_1}^{x_2} F(x,y(x),y'(x))dxJ=x1∫x2F(x,y(x),y′(x))dx
其中
- x1x_1x1,x2x_2x2是常数;
- y(x)y(x)y(x)二阶连续可微函数;
- y′(x)=dy/dxy'(x)=dy/dxy′(x)=dy/dx;
- F(x,y(x),y′(x))F(x,y(x),y'(x))F(x,y(x),y′(x))是关于变量xxx,yyy,y′y'y′的二阶连续可微函数。
假如泛函J[y]J[y]J[y]在fff处取得局部极小值,对于任意函数η(x)\eta(x)η(x), 有一阶导数且在η(x1)=η(x2)=0\eta(x_1)=\eta(x_2)=0η(x1)=η(x2)=0, 对于趋近于0的任意小的数ε\varepsilonε,有:
J[f]≤J[f+εη]J[f]\leq J[f+\varepsilon\eta]J[f]≤J[f+εη]
其中,εη\varepsilon\etaεη就是函数fff的变分,用δf\delta fδf来表示。
用f+εηf+\varepsilon\etaf+εη替换泛函J[y]J[y]J[y]中的yyy,结果就是ε\varepsilonε的一个函数:
Φ(ε)=J[f+εη]\Phi(\varepsilon)=J[f+\varepsilon\eta]Φ(ε)=J[f+εη]
因为函数JJJ在fff处取得极小值,所以函数Φ(ε)\Phi(\varepsilon)Φ(ε)在ε=0\varepsilon=0ε=0处取得极小值,因此,
Φ′(0)≡dΦdε∣ε=0=∫x1x2dFdε∣ε=0dx=0\Phi'(0)\equiv\frac{d\Phi}{d\varepsilon}\bigg|_{\varepsilon=0}=\int_{x_1}^{x_2}\frac{dF}{d\varepsilon}\bigg|_{\varepsilon=0}dx=0Φ′(0)≡dεdΦ∣∣∣∣ε=0=∫x1x2dεdF∣∣∣∣ε=0dx=0
对泛函F(x,y,y′)F(x,y,y')F(x,y,y′)求全微分,其中y=f+εy=f+\varepsilony=f+ε,y′=f′+εη′y'=f'+\varepsilon\eta'y′=f′+εη′都是ε\varepsilonε的函数,但是xxx不是(即,dxdε=0\frac{dx}{d\varepsilon}=0dεdx=0),所以有:
dFdε=∂F∂ydydε+∂F∂y′dy′dε\frac{dF}{d\varepsilon}=\frac{\partial{F}}{\partial{y}}\frac{dy}{d\varepsilon}+\frac{\partial{F}}{\partial{y'}}\frac{dy'}{d\varepsilon}dεdF=∂y∂Fdεdy+∂y′∂Fdεdy′
因为dydε=η\frac{dy}{d\varepsilon}=\etadεdy=η, dy′dε=η′\frac{dy'}{d\varepsilon}=\eta'dεdy′=η′,所以有:
dFdε=∂F∂yη+∂F∂y′η′\frac{dF}{d\varepsilon}=\frac{\partial{F}}{\partial{y}}\eta+\frac{\partial{F}}{\partial{y'}}\eta'dεdF=∂y∂Fη+∂y′∂Fη′
因此
∫x1x2dFdε∣ε=0dx=∫x1x2(∂F∂fη+∂F∂f′η′)dx=∫x1x2(∂F∂fη+ddx(∂F∂f′η)−ηddx∂F∂f′)dx(分部积分)=∫x1x2(∂F∂fη−ηddx∂F∂f′)dx+∂F∂f′η∣x1x2
\begin{aligned}
\int_{x_{1}}^{x_2}\frac{dF}{d\varepsilon}\bigg|_{\varepsilon=0}dx
& =\int_{x_1}^{x_2}\bigg(\frac{\partial{F}}{\partial{f}}\eta+\frac{\partial{F}}{\partial{f'}}\eta'\bigg)dx \\
& =\int_{x_1}^{x_2}\bigg(\frac{\partial{F}}{\partial{f}}\eta+\frac{d}{dx}(\frac{\partial{F}}{\partial{f'}}\eta)-\eta\frac{d}{dx}\frac{\partial{F}}{\partial{f'}}\bigg)dx \quad(分部积分)\\
& = \int_{x_1}^{x_2}\bigg(\frac{\partial F}{\partial f}\eta-\eta\frac{d}{dx}\frac{\partial F}{\partial f'}\bigg)dx+\frac{\partial F}{\partial f'}\eta\bigg|_{x_1}^{x_2}
\end{aligned}
∫x1x2dεdF∣∣∣∣ε=0dx=∫x1x2(∂f∂Fη+∂f′∂Fη′)dx=∫x1x2(∂f∂Fη+dxd(∂f′∂Fη)−ηdxd∂f′∂F)dx(分部积分)=∫x1x2(∂f∂Fη−ηdxd∂f′∂F)dx+∂f′∂Fη∣∣∣∣x1x2
当ε=0\varepsilon=0ε=0时,F[x,y,y′]→F[x,f,f′]F[x,y,y']\to F[x,f,f']F[x,y,y′]→F[x,f,f′]。因为η(x1)=η(x2)=0\eta(x_1)=\eta(x_2)=0η(x1)=η(x2)=0,且公式左边等于0,所以有:
∫x1x2η(x)(∂F∂f−ddx∂F∂f′)dx=0
\int_{x_1}^{x_2}\eta(x)\bigg(\frac{\partial F}{\partial f}-\frac{d}{dx}\frac{\partial F}{\partial f'}\bigg)dx=0
∫x1x2η(x)(∂f∂F−dxd∂f′∂F)dx=0
根据变分法基本定理,知道:
∂F∂f−ddx∂F∂f′=0\frac{\partial F}{\partial f}-\frac{d}{dx}\frac{\partial F}{\partial f'}=0∂f∂F−dxd∂f′∂F=0
这个公式即为欧拉-朗格朗日方程( Euler-Lagrange)。欧拉-拉格朗日方程还可以推广至多元和高阶,在偏微分方程和微分几何领域有广泛的应用前景。
变分法典型应用
最短距离问题
针对一开始提出的最短距离问题,其泛函表示形式为:
J(f(x))=∫AB1+f′(x)2dxJ(f(x))=\int\limits_{A}^B\sqrt{1+f'(x)^2}dxJ(f(x))=A∫B1+f′(x)2dx
即
F(x,y,y′)=1+f′(x)2F(x,y,y')=\sqrt{1+f'(x)^2}F(x,y,y′)=1+f′(x)2
∂F∂f=0\frac{\partial F}{\partial f}=0∂f∂F=0
∂F∂f′=f′(x)1+f′(x)2\frac{\partial F}{\partial f'}=\frac{f'(x)}{\sqrt{1+f'(x)^2}}∂f′∂F=1+f′(x)2f′(x)
ddx∂F∂f′=f′′(x)(1+f′(x)2)−32\frac{d}{dx}\frac{\partial F}{\partial f'}=f''(x)(1+f'(x)^2)^{-\frac{3}{2}}dxd∂f′∂F=f′′(x)(1+f′(x)2)−23
根据欧拉公式,得:f′′(x)=0f''(x)=0f′′(x)=0
所以:
f′(x)=af'(x)=af′(x)=a
f(x)=ax+bf(x)=ax+bf(x)=ax+b
其中a,ba,ba,b为与起始点相关的常数。即两点之间直线最短。