ESPCN

  • 论文全称:Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
    来自CVPR2016
  • The downsampling operation is deterministic and known: to produce ILR from IHR, we first convolve IHR using a Gaussian filter - thus simulating the camera’s point spread function - then downsample the image by a factor of r
    产生模糊的图像不是简单的4个点取一个,而是先用高斯滤波器来卷积,再下采样,这样下采样到的像素能包括其周围像素点的信息
  • The deconvolution layer proposed in [50] can be seen as multiplication of each input pixel by a filter element-wise with stride r, and sums over the resulting output windows also known as backwards convolution
    deconv层可以认为是每个LR像素乘以同一个卷积核得到HR图像,重叠的地方相加
  • The other way to upscale a LR image is convolution with fractional stride of 1 r in the LR space as mentioned by [24], which can be naively implemented by interpolation, perforate [27] or un-pooling [49] from LR space to HR space followed by a convolution with a stride of 1 in HR space. These implementations increase the computational cost by a factor of r2, since convolution happens in HR space
    还要其它upscale的方式比如interp或up-pooling(perforate),得到HRsize的图片,再卷积
  • 而文中选择的upsample的方式比较特殊:

    先conv成r平方个channel的map,然后做位置变化,把每个location 的 r平方个channel的像素摆到一个r*r的正方形里面,变成一张HR,而且conv后是没有non-linear层的,在训练的时候采取相反的方式,把ground-truth的HR分割成r*r的网格然后变化位置变成r平方个channel的3-d map,计算per-pixel loss,会快很多
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值