POJ-1163 The Triangle(简单dp)

本文介绍了一种解决三角形网格中寻找从顶点到底边的最大路径和问题的算法。通过动态规划方法,从底部向上更新每个节点的值,使得每个节点的值变为经过该节点到达底边的所有路径中的最大路径和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
Input

Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
Output

Your program is to write to standard output. The highest sum is written as an integer.
Sample Input

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output

30

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<ctime>
#include<iostream>
#include<algorithm>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<string>
#define ll long long
#define dd double
using namespace std;

int main() {
	ios::sync_with_stdio(false);
	ll n;
	cin >> n;
	ll arr[105][105];
	memset(arr, -1, sizeof(arr));
	for (ll i = 0; i < n; i++) {
		for (ll j = 0; j <= i; j++) {
			cin >> arr[i][j];
		}
	}
	for (ll i = n - 2; i >= 0; i--) {
		for (ll j = 0; j <= i; j++) {
			arr[i][j] = max(arr[i][j] + arr[i + 1][j], arr[i][j] + arr[i + 1][j + 1]);
		}
	}
	cout << arr[0][0] << endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值