MATLAB的矩阵运算与重构

本文介绍了MATLAB中矩阵运算与数组运算的区别,并通过示例对比了加法、乘法、除法、幂等操作在两者间的差异。此外,还详细阐述了矩阵的重构,包括元素扩展、删除,以及矩阵旋转、改变维数和截取部分元素的方法,展示了如何利用reshape、rot90、fliplr、flipud等函数进行矩阵重构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数组运算与矩阵运算
在MATLAB中,术语矩阵和数组在一般情况下是没有区别的。严格地说,一个矩阵就是一个二维的数组,是用来进行线性代数运算的。MATLAB运用于矩阵上的数学运算符是以线性代数中的矩阵运算法则来进行计算的,而数组运算是基于两个矩阵对应元素之间的,所以在MATLAB中,数组运算和矩阵运算是有区别的。
为了更清晰地表述数组运算和矩阵运算的区别,本节将二者相对应的命令列表进行对比,以说明其异同。表2-8列出了两种运算指令形式和实质功能的区别。
表2-8 数组运算与矩阵运算的区别
在这里插入图片描述

【例2-11】 数组运算和矩阵运算的比较。

A=[1 2;3 4]; % 测试矩阵A
B=[4 3;2 1]; % 测试矩阵B
r1=100+A % 矩阵A加上一个常数
r1 =
101 102
103 104

r2_1=A*B % 两个矩阵相乘,矩阵乘法
r2_1 =
8 5
20 13

r2_2=A.*B % 两个矩阵相乘,数组乘法
r2_2 =
4 6
6 4

r3_1=A\B % 矩阵左除
r3_1 =
-6.0000 -5.0000
5.0000 4.0000

r3_2=A.\B % 数组除法
r3_2 =
4.0000 1.5000
0.6667 0.2500

r4_1=B/A % 矩阵右除
r

### Pandas 文件格式读写操作教程 #### 1. CSV文件的读取与保存 Pandas 提供了 `read_csv` 方法用于从 CSV 文件中加载数据到 DataFrame 中。同样,也可以使用 `to_csv` 将 DataFrame 数据保存为 CSV 文件。 以下是具体的代码示例: ```python import pandas as pd # 读取CSV文件 df = pd.read_csv('file.csv') # 加载本地CSV文件 [^1] # 保存DataFrame为CSV文件 df.to_csv('output.csv', index=False) # 不保存行索引 [^1] ``` --- #### 2. JSON文件的读取与保存 对于JSON格式的数据,Pandas 支持通过 `read_json` 和 `to_json` 进行读取和存储。无论是本地文件还是远程 URL 都支持。 具体实现如下所示: ```python # 读取本地JSON文件 df = pd.read_json('data.json') # 自动解析为DataFrame对象 [^3] # 从URL读取JSON数据 url = 'https://example.com/data.json' df_url = pd.read_json(url) # 直接从网络地址获取数据 # 保存DataFrame为JSON文件 df.to_json('output.json', orient='records') ``` --- #### 3. Excel文件的读取与保存 针对Excel文件操作Pandas 使用 `read_excel` 来读取 `.xls` 或 `.xlsx` 格式的文件,并提供 `to_excel` 方法导出数据至 Excel 表格。 注意:需要安装额外依赖库 `openpyxl` 或 `xlrd` 才能正常运行这些功能。 ```python # 安装必要模块 (如果尚未安装) !pip install openpyxl xlrd # 读取Excel文件 df_excel = pd.read_excel('file.xlsx', sheet_name='Sheet1') # 导出DataFrame为Excel文件 df.to_excel('output.xlsx', sheet_name='Sheet1', index=False) ``` --- #### 4. SQL数据库的交互 当涉及关系型数据库时,Pandas 可借助 SQLAlchemy 库连接各种类型的数据库(如 SQLite, MySQL)。它允许直接查询并将结果作为 DataFrame 返回;或者反过来把现有 DataFrame 插入到指定表中。 下面是基于SQLite的一个例子: ```python from sqlalchemy import create_engine # 创建引擎实例 engine = create_engine('sqlite:///database.db') # 查询SQL语句并返回DataFrame query = "SELECT name, salary, department FROM employees" sql_df = pd.read_sql(query, engine) # 计算各部门平均工资 avg_salary_by_dept = sql_df.groupby('department')['salary'].mean() # 将DataFrame存回SQL表 avg_salary_by_dept.to_sql(name='average_salaries_per_department', con=engine, if_exists='replace', index=True) ``` 上述片段说明了如何执行基本SQL命令以及后续数据分析流程[^4]。 --- #### 5. 多层次索引(MultiIndex)的应用场景 除了常规单维度索引外,在某些复杂情况下可能需要用到多级索引结构。这时可以依靠 MultiIndex 构建更加灵活的数据模型。 例如定义一个多层列名体系: ```python arrays = [['A','A','B','B'], ['foo','bar','foo','bar']] tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df_multi_indexed = pd.DataFrame([[0,1,2,3], [4,5,6,7]], columns=index) print(df_multi_indexed) ``` 这段脚本演示了怎样构建一个具有双重分类标签的表格布局[^2]。 --- ### 总结 综上所述,Pandas 是一种强大而易用的数据处理工具包,适用于多种常见文件类型之间的相互转换及其高级特性应用开发之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值