HDU 1028 Ignatius and the Princess III

本文详细解析了HDU1028题目“Ignatius and the Princess III”的解决方法,通过母函数和动态规划两种思路阐述了如何计算将一个整数拆分为多个整数和的方案数。文章提供了代码示例,帮助读者理解并掌握母函数入门题的解题技巧。

HDU 1028 Ignatius and the Princess III

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1028

题意:将一个整数拆成若干整数和 求分解的方案有几种 其中 7=5+1+1与7=1+5+1视为一种

常规思路是用母函数写 算是母函数入门题
母函数原型:(x ^ 0 + x ^ 1 + x ^ 2 + … + x^n) * (x ^ 0 + x ^ 2 + x ^ 4 + …+ x ^ n)(x ^ 0 + x ^ n)

第一个括号里面表示1的个数 第二个括号表示2的个数 以此类推
这里举一个简单的例子方便大家理解普通母函数 你有3枚硬币 分别是 1元,2元 和3元 问得到 5元 有几种方案。 最暴力的方法,全部枚举,那么对于1元,你有取或者不取两种方案,2元也是,取或者不取,3元也是。这里就设x^k,k表示面额,那么对于1元,取就是x ^ 1,不取就是x ^ 0,既(x ^0 +x ^1),那么最后可以得到(x ^0+x ^1)(x ^0+x ^2)(x ^0+x ^3) = x ^0+x ^1+x ^2+2*x ^3+x ^4+x ^5+x ^6。每项前面的系数表示得到k元有几种方案,即用多项式相乘代替暴力枚举。

那么对于这一题,只要枚举1的个数到n的个数,最后求出x ^n的系数即可。
话不多说 上代码。

#include<stdio.h>
int main()
{
    int t,dp[130],ans[130];
    while(scanf("%d",&t)!=EOF)
    {
        for(int i=0;i<=t;i++)
        {
            dp[i]=1;
            ans[i]=0;
        }
        
        for(int i=2;i<=t;i++)
        {
            for(int k=0;k<=t;k++)
            {
                for(int l=0;l+k<=t;l+=i)
                ans[k+l]+=dp[k];
            }
            
            for(int j=0;j<=t;j++)
            {
                dp[j]=ans[j];
                ans[j]=0;
            }
        }
        printf("%d\n",dp[t]);
    }
    return 0;
 } 

另一种思路:DP 这题其实可以看成完全背包问题,对于无限量的1,2,3,4…问存满容量为n的背包,有几种方案。 代码不贴了,和母函数的几乎一样。可以试着拿完全背包的思维去看上面的代码,先设dp[0]为1,dp[t]表示到达t的方案数,dp[i][j] = dp[i-1][j-w[i]]+dp[i][j]。

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值