Codeforces1743E FTL

tags

动态规划

中文题面

FTL

有两艘飞船,第 i i i 艘飞船( i ∈ [ 1 , 2 ] i∈[1,2] i[1,2])的攻击力为 p i p_i pi,每一次攻击的充能时间为 t i t_i ti,一开始两艘飞船没有充能。

现在要打败敌方飞船,敌方飞船的血量为 h h h,防御力为 s s s。对于一次攻击力为 P P P 的攻击,敌方飞船的血量会减少 ( P − s ) (P-s) (Ps)。每一次攻击可以是一艘飞船单独攻击,也可以是两艘飞船同时攻击(当一艘飞船完成充能后,可以等待另一艘飞船充能,然后再一起攻击)。两艘飞船一起攻击的攻击力为 p 1 + p 2 p_1+p_2 p1+p2

打败敌方飞船的条件是使得敌方飞船的血量小于等于 0 0 0。现在依次给出 p 1 , t 1 , p 2 , t 2 , h , s p_1,t_1,p_2,t_2,h,s p1,t1,p2,t2,h,s,求出最少需要多少时间能够打败敌方飞船。

思路

考虑 d p dp dp,设 f i f_i fi​ 表示通过若干单发 + 最后恰好一次双炮连发使敌方耐久度减少 i i i 的最小时间, g i g_i gi​ 表示通过若干次若干单发 + 双炮连发的连续组合使敌方耐久度减少 i i i 的最小时间

代码

#include <iostream>
#define ll long long
using namespace std;
ll dp1[10007], dp2[10007];

int main(){
	int p1, p2, h, s, n;
	ll t1, t2, ans;
    cin >> p1 >> t1 >> p2 >> t2 >> h >> s;
	n = h + max(p1, p2);
	ans = min(t1 * ((h - 1) / (p1 - s) + 1), t2 * ((h - 1) / (p2 - s) + 1));
	for (int i = 1; i <= n; i++){
		dp1[i] = dp2[i] = 4e18;
		for (int j = 0; j * (p1 - s) + (p1 + p2 - s) <= i; j++){
			ll x = i - (j * (p1 - s) + (p1 + p2 - s));
			dp1[i] = min(dp1[i], max(t1 * (j + 1), t2 * ((x == 0 ? 0 : (x - 1) / (p2 - s) + 1) + 1)));
		}
		for (int j = 0; j < i; j++){
			dp2[i] = min(dp2[i], dp2[j] + dp1[i - j]);
		}
		if (i >= h) ans = min(ans, dp2[i]);
	}
    cout << ans;
	return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值