题目链接
思路
给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。
示例 1:
输入: [1,2,3,4,5,6,7] 和 k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右旋转 1 步: [7,1,2,3,4,5,6]
向右旋转 2 步: [6,7,1,2,3,4,5]
向右旋转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入: [-1,-100,3,99] 和 k = 2
输出: [3,99,-1,-100]
解释:
向右旋转 1 步: [99,-1,-100,3]
向右旋转 2 步: [3,99,-1,-100]
说明:
尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。
要求使用空间复杂度为 O(1) 的 原地 算法。
思路
当我们将数组的元素向右移动 kk次后,尾部 k mod n 个元素会移动至数组头部,其余元素向后移动 k mod n 个位置。
该方法为数组的翻转:我们可以先将所有元素翻转,这样尾部的 k mod n 个元素就被移至数组头部,然后我们再翻转 [0,k mod n−1] 区间的元素和 [k mod n,n−1] 区间的元素即能得到最后的答案。
以 n=7,k=3 为例进行如下展示:
代码如下:
class Solution {
public:
void rotate(vector<int>& nums, int k) {
reverse(nums.begin(),nums.end());
int i=k%nums.size();
reverse(nums.begin(),nums.begin()+i);
reverse(nums.begin()+i,nums.end());
}
};