题目链接:http://poj.org/problem?id=3268
这道题的主要意思是有1-n头牛分别来自1-n号农场,农场之间有一些路,且都是单向的。现全部牛要到x号农场开party,开完后还要回到各自的农场,每一头牛都会选择最短时间的路来走,问这些牛中走的最长的时间。
思路:先求出每头牛到x农场的最短时间,再求每头牛返回各自农场的最短时间,两者相加取最大即可。而难点就在于怎么求最短时间,这里就要用到dijkstra算法了。去x农场时,以各牛为起点到x农场求最短路。而返回时要作一下转换即swap(map[i][j],map[j][i]),这样就和开始去x农场时的一样了。
如果不太了解dijkstra算法的话,可以看一下这位博主写的,感觉很容易理解。
https://blog.youkuaiyun.com/qq_35644234/article/details/60870719
#include <iostream>
#include<algorithm>
#include<string>
using namespace std;
const int inf = 0xffff;
int map[1005][1005],dis[1005],n,m,x,temp1[1005],vis[1005];
void dijkstra()
{
for (int i = 1; i <= n; i++)
dis[i] = inf;
dis[x] = 0;
for (int i = 1; i <= n; i++)
vis[i] = 0;
for (int i = 1; i <= n; i++)
{
if(i!=x)
dis[i] = map[x][i];
}
for (int i = 1; i <= n; i++)
{
int x1 = 0 , minn = inf;
for (int j = 1; j <= n; j++)
if (!vis[j] && dis[j] <= minn)
{
minn = dis[j];
x1 = j;
}
vis[x1] = 1;
for (int j = 1; j <= n; j++)
{
dis[j] = min(dis[j], dis[x1] + map[x1][j]);
}
}
}
int main()
{
for (int i = 1; i <= 1004; i++)
for (int j = 1; j <= 1004; j++)
map[i][j] = inf;
cin >> n >> m >> x;
while (m--)
{
int i, j, a;
cin >> i >> j >> a;
map[i][j] = a;
}
dijkstra();
int temp1[1005];
for (int i = 1; i <= n; i++)
{
temp1[i] = dis[i];
}
for(int i=1;i<=n;i++)
for (int j = 1; j <= n; j++)//转换
if(i>=j)
swap(map[i][j], map[j][i]);
dijkstra();
int maxn = 0;
for (int i = 1; i <= n; i++)
{
maxn = max(temp1[i] + dis[i], maxn);
}
cout << maxn<<endl;
return 0;
}