198.打家劫舍
思路与重点
- 递推公式:dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for (int i = 2; i < nums.size(); i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[nums.size() - 1];
}
};
213.打家劫舍II
思路与重点
- 不考虑第一间房或者不考虑最后一间房,选出两种方案的最优解即可。
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
int result1 = robRange(nums, 0, nums.size() - 2);
int result2 = robRange(nums, 1, nums.size() - 1);
return max(result1, result2);
}
int robRange(vector<int>& nums, int start, int end) {
if (end == start) return nums[start];
vector<int> dp(nums.size());
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[end];
}
};
337.打家劫舍III
思路与重点
- 用记忆化递归解决:unordered_map<TreeNode* , int> umap;
class Solution {
public:
unordered_map<TreeNode* , int> umap;
int rob(TreeNode* root) {
if (root == NULL) return 0;
if (root->left == NULL && root->right == NULL) return root->val;
if (umap[root]) return umap[root];
int val1 = root->val;
if (root->left) val1 += rob(root->left->left) + rob(root->left->right);
if (root->right) val1 += rob(root->right->left) + rob(root->right->right);
int val2 = rob(root->left) + rob(root->right);
umap[root] = max(val1, val2);
return max(val1, val2);
}
};
- 树形DP入门!
- **dp数组以及下标的含义:**下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。
class Solution {
public:
int rob(TreeNode* root) {
vector<int> result = robTree(root);
return max(result[0], result[1]);
}
vector<int> robTree(TreeNode* cur) {
if (cur == NULL) return vector<int>{0, 0};
vector<int> left = robTree(cur->left);
vector<int> right = robTree(cur->right);
int val1 = cur->val + left[0] + right[0];
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
}
};