大模型低资源部署策略

    由于大模型的参数量巨大,在解码阶段需要占用大量的显存资源,因而在实际应用中的部署代价非常高。在本文中,我们将介绍一种常用的模型压缩方法,即模型量化(ModelQuantization),来减少大模型的显存占用,从而使得能够在资源有限的环境下使用大模型

解码效率分析

    在神经网络压缩中,量化通常是指从浮点数到整数的映射过程,目前比较常用的是8比特整数量化,即INT8量化。针对神经网络模型,通常有两种类型的数据需要进行量化,分别为权重量化(也称为模型参数量化)和激活(值)量化,它们都以浮点数形式进行表示与存储。量化的数学表述量化的过程可以表示为一个函数,该函数将连续的输入映射到离散的输出集合。一般来说,这个过程涉及到四舍五入或截断等近似操作。下面介绍一个一般形式的量化函数:在这里插入图片描述通过上述数学变换,量化算法将浮点数向量𝒙转化为量化值𝒙𝒒。其中,𝑆表示缩放因子,用于确定裁剪范围,𝑍表示零点因子,用于确定对称或非对称量化,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值