1. PCA
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
def pca(dataMat,topNfeat=9999999):
meanVals=np.mean(dataMat,axis=0)
# 去除平均值,实现数据中心化
meanRemoved=dataMat-meanVals
covMat=np.cov(meanRemoved,rowvar=0)
# 计算矩阵的特征值个特征向量
eigVals,eigVects=np.linalg.eig(np.mat(covMat))
eigValInd=np.argsort(eigVals)
# 从大到小对N个值排序
eigValInd=eigValInd[:-(topNfeat+1):-1]
redEigVects=eigVects[:,eigValInd]
# 将数据转换到新空间
lowDDataMat=meanRemoved*redEigVects
reconMat=(lowDDataMat*redEigVects.T)+meanVals
return lowDDataMat,reconMat
dataMat = np.array([[1,2,3], [4,2,1], [3,2,1]])
X = load_digits().data[:, :]
lowDDataMat,reconMat = pca(X,topNfeat=2)
print(lowDDataMat)
print(reconMat)
plt.scatter(lowDDataMat[:,0].tolist(), lowDDataMat[:,1].tolist(),c =