目录
B:HDU-2767 Proving Equivalences
先给个网址了解下强连通:(强连通算法)
Kosaraju算法(转自Kosaraju算法)
连通分量:在无向图中,即为连通子图。
上图中,总共有四个连通分量。顶点A、B、C、D构成了一个连通分量,顶点E构成了一个连通分量,顶点F,G和H,I分别构成了两个连通分量。
强连通分量:有向图中,尽可能多的若干顶点组成的子图中,这些顶点都是相互可到达的,则这些顶点成为一个强连通分量。
上图中有三个强连通分量,分别是a、b、e以及f、g和c、d、h。
2. 连通分量的求解方法
对于一个无向图的连通分量,从连通分量的任意一个顶点开始,进行一次DFS,一定能遍历这个连通分量的所有顶点。所以,整个图的连通分量数应该等价于遍历整个图进行了几次(最外层的)DFS。一次DFS中遍历的所有顶点属于同一个连通分量。
下面我们将介绍有向图的强连通分量的求解方法。
3. Kosaraju算法的基本原理
我们用一个最简单的例子讲解Kosaraju算法
显然上图中有两个强连通分量,即强连通分量A和强连通分量B,分别由顶点A0-A1-A2和顶点B3-B4-B5构成。每个连通分量中有若干个可以相互访问的顶点(这里都是3个),强连通分量与强连通分量之间不会形成环,否则应该将这些连通分量看成一个整体,即看成同一个强连通分量。
我们现在试想能否按照无向图中求连通分量的思路求解有向图的强连通分量。我们假设,DFS从强连通分量B的任意一个顶点开始,那么恰好遍历整个图需要2次DFS,和连通分量的数量相等,而且每次DFS遍历的顶点恰好属于同一个连通分量。但是,我们若从连通分量A中任意一个顶点开始DFS,就不能得到正确的结果,因为此时我们只需要一次DFS就访问了所有的顶点。所以,我们不应该按照顶点编号的自然顺序(0,1,2,……)或者任意其它顺序进行DFS,而是应该按照被指向的强连通分量的顶点排在前面的顺序进行DFS。上图中由强连通分量A指向了强连通分量B。所以,我们按照
B3, B4, B5, A0, A1, A2
的顺序进行DFS,这样就可以达到我们的目的。但事实上这样的顺序太过严格,我们只需要保证被指向的强连通分量的至少一个顶点排在指向这个连通分量的所有顶点前面即可,比如
B3, A0, A1, A2, B4, B5
B3排在了强连通分量A所有顶点的前面。
现在我们的关键问题就是如何得到这样一个满足要求的顶点顺序,Kosaraju给出了这解决办法:对原图取反,然后从反向图的任意节点开始进行DFS的逆后序遍历,逆后序得到的顺序一定满足我们的要求。
DFS的逆后序遍历是指:如果当前顶点未访问,先遍历完与当前顶点相连的且未被访问的所有其它顶点,然后将当前顶点加入栈中,最后栈中从栈顶到栈底的顺序就是我们需要的顶点顺序。
上图表示原图的反向。
我们现在进行第一种假设:假设DFS从位于强连通分量A中的任意一个节点开始。那么第一次DFS完成后,栈中全部都是强连通分量A的顶点,第二次DFS完成后,栈顶一定是强连通分量B的顶点。保证了从栈顶到栈底的排序强连通分量B的顶点全部都在强连通分量A顶点之前。
我们现在进行第二种假设:假设DFS从位于强连通分量B中的任意一个顶点开始。显然我们只需要进行一次DFS就可以遍历整个图,由于是逆后续遍历,那么起始顶点一定最后完成,所以栈顶的顶点一定是强连通分量B中的顶点,这显然是我们希望得到的顶点排序的结果。
上面使用了最简单的例子说明Kosaraju算法的原理,对于有多个强连通分量,连接复杂的情况,仍然适用。大家可以自行举例验证。
综上可得,不论从哪个顶点开始,图中有多少个强连通分量,逆后续遍历的栈中顶点的顺序一定会保证:被指向的强连通分量的至少一个顶点排在指向这个连通分量的所有顶点前面。所以,我们求解强连通分量的步骤可以分为两步:
(1)对原图取反,从任意一个顶点开始对反向图进行逆后续DFS遍历
(2)按照逆后续遍历中栈中的顶点出栈顺序,对原图进行DFS遍历,一次DFS遍历中访问的所有顶点都属于同一强连通分量。
模板在下面例题中给出(不同题模板不同,可根据题理解模板)。
Tarjan算法(转自Tarjan算法)
tarjan算法,一个关于 图的联通性的神奇算法。基于DFS(迪法师)算法,深度优先搜索一张有向图。!注意!是有向图。根据树,堆栈,打标记等种种神(che)奇(dan)方法来完成剖析一个图的工作。而图的联通性,就是任督二脉通不通。。的问题。
了解tarjan算法之前你需要知道:
强连通,强连通图,强连通分量,解答树(解答树只是一种形式。了解即可)
不知道怎么办!!!
神奇海螺~:嘟噜噜~!
强连通(strongly connected): 在一个有向图G里,设两个点 a b 发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,b)强连通。
强连通图: 如果 在一个有向图G中,每两个点都强连通,我们就叫这个图,强连通图。
强连通分量strongly connected components):在一个有向图G中,有一个子图,这个子图每2个点都满足强连通,我们就叫这个子图叫做 强连通分量 [分量::把一个向量分解成几个方向的向量的和,那些方向上的向量就叫做该向量(未分解前的向量)的分量]
举个简单的栗子:
比如说这个图,在这个图中呢,点1与点2互相都有路径到达对方,所以它们强连通.
而在这个有向图中,点1 2 3组成的这个子图,是整个有向图中的强连通分量。
解答树:就是一个可以来表达出递归枚举的方式的树(图),其实也可以说是递归图。。反正都是一个作用,一个展示从“什么都没有做”开始到“所有结求出来”逐步完成的过程。“过程!”
神奇海螺结束!!!
tarjan算法,之所以用DFS就是因为它将每一个强连通分量作为搜索树上的一个子树。而这个图,就是一个完整的搜索树。
为了使这颗搜索树在遇到强连通分量的节点的时候能顺利进行。每个点都有两个参数。
1,DFN[]作为这个点搜索的次序编号(时间戳),简单来说就是 第几个被搜索到的。%每个点的时间戳都不一样%。
2,LOW[]作为每个点在这颗树中的,最小的子树的根,每次保证最小,like它的父亲结点的时间戳这种感觉。如果它自己的LOW[]最小,那这个点就应该从新分配,变成这个强连通分量子树的根节点。
ps:每次找到一个新点,这个点LOW[]=DFN[]。
而为了存储整个强连通分量,这里挑选的容器是,堆栈。每次一个新节点出现,就进站,如果这个点有 出度 就继续往下找。直到找到底,每次返回上来都看一看子节点与这个节点的LOW值,谁小就取谁,保证最小的子树根。如果找到DFN[]==LOW[]就说明这个节点是这个强连通分量的根节点(毕竟这个LOW[]值是这个强连通分量里最小的。)最后找到强连通分量的节点后,就将这个栈里,比此节点后进来的节点全部出栈,它们就组成一个全新的强连通分量。
先来一段伪代码压压惊:
tarjan(u){
DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值
Stack.push(u) // 将节点u压入栈中
for each (u, v) in E // 枚举每一条边
if (v is not visted) // 如果节点v未被访问过
tarjan(v) // 继续向下找
Low[u] = min(Low[u], Low[v])
else if (v in S) // 如果节点u还在栈内
Low[u] = min(Low[u], DFN[v])
if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根
repeat v = S.pop // 将v退栈,为该强连通分量中一个顶点
print v
until (u== v)
}
首先来一张有向图。网上到处都是这个图。我们就一点一点来模拟整个算法。
从1进入 DFN[1]=LOW[1]= ++index ----1
入栈 1
由1进入2 DFN[2]=LOW[2]= ++index ----2
入栈 1 2
之后由2进入3 DFN[3]=LOW[3]= ++index ----3
入栈 1 2 3
之后由3进入 6 DFN[6]=LOW[6]=++index ----4
入栈 1 2 3 6
之后发现 嗯? 6无出度,之后判断 DFN[6]==LOW[6]
说明6是个强连通分量的根节点:6及6以后的点 出栈。
栈: 1 2 3
之后退回 节点3 Low[3] = min(Low[3], Low[6]) LOW[3]还是 3
节点3 也没有再能延伸的边了,判断 DFN[3]==LOW[3]
说明3是个强连通分量的根节点:3及3以后的点 出栈。
栈: 1 2
之后退回 节点2 嗯?!往下到节点5
DFN[5]=LOW[5]= ++index -----5
入栈 1 2 5
ps:你会发现在有向图旁边的那个丑的(划掉)搜索树 用红线剪掉的子树,那个就是强连通分量子树。每次找到一个。直接。一剪子下去。半个子树就没有了。。
结点5 往下找,发现节点6 DFN[6]有值,被访问过。就不管它。
继续 5往下找,找到了节点1 他爸爸的爸爸。。DFN[1]被访问过并且还在栈中,说明1还在这个强连通分量中,值得发现。 Low[5] = min(Low[5], DFN[1])
确定关系,在这棵强连通分量树中,5节点要比1节点出现的晚。所以5是1的子节点。so
LOW[5]= 1
由5继续回到2 Low[2] = min(Low[2], Low[5])
LOW[2]=1;
由2继续回到1 判断 Low[1] = min(Low[1], Low[2])
LOW[1]还是 1
1还有边没有走过。发现节点4,访问节点4
DFN[4]=LOW[4]=++index ----6
入栈 1 2 5 4
由节点4,走到5,发现5被访问过了,5还在栈里,
Low[4] = min(Low[4], DFN[5]) LOW[4]=5
说明4是5的一个子节点。
由4回到1.
回到1,判断 Low[1] = min(Low[1], Low[4])
LOW[1]还是 1 。
判断 LOW[1] == DFN[1]
诶?!相等了 说明以1为根节点的强连通分量已经找完了。
将栈中1以及1之后进栈的所有点,都出栈。
栈 :(鬼都没有了)
这个时候就完了吗?!
你以为就完了吗?!
然而并没有完,万一你只走了一遍tarjan整个图没有找完怎么办呢?!
所以。tarjan的调用最好在循环里解决。
like 如果这个点没有被访问过,那么就从这个点开始tarjan一遍。
因为这样好让每个点都被访问到。
来一道裸代码。
输入:
一个图有向图。
输出:
它每个强连通分量。
这个图就是刚才讲的那个图。一模一样。
input:
6 8
1 3
1 2
2 4
3 4
3 5
4 6
4 1
5 6
output:
6
5
3 4 2 1
#include<cstdio>
#include<algorithm>
#include<string.h>
using namespace std;
struct node {
int v,next;
}edge[1001];
int DFN[1001],LOW[1001];
int stack[1001],heads[1001],visit[1001],cnt,tot,index;
void add(int x,int y)
{
edge[++cnt].next=heads[x];
edge[cnt].v = y;
heads[x]=cnt;
return ;
}
void tarjan(int x)//代表第几个点在处理。递归的是点。
{
DFN[x]=LOW[x]=++tot;// 新进点的初始化。
stack[++index]=x;//进站
visit[x]=1;//表示在栈里
for(int i=heads[x];i!=-1;i=edge[i].next)
{
if(!DFN[edge[i].v]) {//如果没访问过
tarjan(edge[i].v);//往下进行延伸,开始递归
LOW[x]=min(LOW[x],LOW[edge[i].v]);//递归出来,比较谁是谁的儿子/父亲,就是树的对应关系,涉及到强连通分量子树最小根的事情。
}
else if(visit[edge[i].v ]){ //如果访问过,并且还在栈里。
LOW[x]=min(LOW[x],DFN[edge[i].v]);//比较谁是谁的儿子/父亲。就是链接对应关系
}
}
if(LOW[x]==DFN[x]) //发现是整个强连通分量子树里的最小根。
{
do{
printf("%d ",stack[index]);
visit[stack[index]]=0;
index--;
}while(x!=stack[index+1]);//出栈,并且输出。
printf("\n");
}
return ;
}
int main()
{
memset(heads,-1,sizeof(heads));
int n,m;
scanf("%d%d",&n,&m);
int x,y;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=1;i<=n;i++)
if(!DFN[i]) tarjan(1);//当这个点没有访问过,就从此点开始。防止图没走完
return 0;
}