树状数组

本文介绍了一种处理数列操作与查询的高效算法,包括更新数列元素和查询区间和的功能。通过使用树状数组(Binary Indexed Tree),文章详细解释了如何实现快速更新和查询操作,适用于大规模数据处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【例题1】

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某一个数加上x

2.求出某区间每一个数的和

输入格式

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3个整数,表示一个操作,具体如下:

操作1: 格式:1 x k 含义:将第x个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

输出格式

输出包含若干行整数,即为所有操作2的结果。

输入输出样例

输入 #1

5 5
1 5 4 2 3
1 1 3
2 2 5
1 3 -1
1 4 2
2 1 4

输出 #1

14
16

说明/提示

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=10000,M<=10000

对于100%的数据:N<=500000,M<=500000

样例说明:

故输出结果14、16

【代码】

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
int n,m,tree[2000010];
int lowbit(int k)
{
    return k & -k;
}
void add(int x,int k)
{
    while(x<=n)
    {
        tree[x]+=k;
        x+=lowbit(x);
    }
}
int sum(int x)
{
    int ans=0;
    while(x!=0)
    {
        ans+=tree[x];
        x-=lowbit(x);
    }
    return ans;
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        int a;
        scanf("%d",&a);
        add(i,a);
    }
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        if(a==1) add(b,c);
        if(a==2) cout<<sum(c)-sum(b-1)<<endl;
    }
    return 0;
}

【说明】

lowbit()函数:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值