AIGC笔记--基于Stable Diffusion实现图片的inpainting

1--完整代码

SD_Inpainting

2--简单代码

import PIL
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import torchvision
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer

# 预处理mask
def preprocess_mask(mask):
    mask = mask.convert("L") # 转换为灰度图: L = R * 299/1000 + G * 587/1000+ B * 114/1000。
    w, h = mask.size # 512, 512
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    mask = mask.resize((w // 8, h // 8), resample = PIL.Image.NEAREST) # 64, 64
    mask = np.array(mask).astype(np.float32) / 255.0 # 归一化 64, 64
    mask = np.tile(mask, (4, 1, 1)) # 4, 64, 64
    mask = mask[None].transpose(0, 1, 2, 3)
    mask = 1 - mask  # repaint white, keep black # mask图中,mask的部分变为0
    mask = torch.from_numpy(mask)
    return mask

# 预处理image
def preprocess(image):
    w, h = image.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return 2.0 * image - 1.0

if __name__ == "__main__":
    model_id = "runwayml/stable-diffusion-v1-5" # online download
    # model_id = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/All_test/test0714/huggingface.co/runwayml/stable-diffusion-v1-5" # local path

    # 读取输入图像和输入mask
    input_image = Image.open("./images/overture-creations-5sI6fQgYIuo.png").resize((512, 512))
    input_mask = Image.open("./images/overture-creations-5sI6fQgYIuo_mask.png").resize((512, 512))

    # 1. 加载autoencoder
    vae = AutoencoderKL.from_pretrained(model_id, subfolder = "vae")

    # 2. 加载tokenizer和text encoder 
    tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder = "tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder = "text_encoder")

    # 3. 加载扩散模型UNet
    unet = UNet2DConditionModel.from_pretrained(model_id, subfolder = "unet")

    # 4. 定义noise scheduler
    noise_scheduler = DDIMScheduler(
        num_train_timesteps = 1000,
        beta_start = 0.00085,
        beta_end = 0.012,
        beta_schedule = "scaled_linear",
        clip_sample = False, # don't clip sample, the x0 in stable diffusion not in range [-1, 1]
        set_alpha_to_one = False,
    )

    # 将模型复制到GPU上
    device = "cuda"
    vae.to(device, dtype = torch.float16)
    text_encoder.to(device, dtype = torch.float16)
    unet = unet.to(device, dtype = torch.float16)

    # 设置prompt和超参数
    prompt = "a mecha robot sitting on a bench"
    negative_prompt = ""
    strength = 0.75
    guidance_scale = 7.5
    batch_size = 1
    num_inference_steps = 50
    generator = torch.Generator(device).manual_seed(0)

    with torch.no_grad():
        # get prompt text_embeddings
        text_input = tokenizer(prompt, padding = "max_length", 
            max_length = tokenizer.model_max_length, 
            truncation = True, 
            return_tensors = "pt")
        text_embeddings = text_encoder(text_input.input_ids.to(device))[0]

        # get unconditional text embeddings
        max_length = text_input.input_ids.shape[-1]
        uncond_input = tokenizer(
            [negative_prompt] * batch_size, padding = "max_length", max_length = max_length, return_tensors = "pt"
        )
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
        # concat batch
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        # 设置采样步数
        noise_scheduler.set_timesteps(num_inference_steps, device = device)

        # 根据strength计算timesteps
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = noise_scheduler.timesteps[t_start:]

        # 预处理init_image
        init_input = preprocess(input_image)
        init_latents = vae.encode(init_input.to(device, dtype=torch.float16)).latent_dist.sample(generator)
        init_latents = 0.18215 * init_latents
        init_latents = torch.cat([init_latents] * batch_size, dim=0)
        init_latents_orig = init_latents

        # 处理mask
        mask_image = preprocess_mask(input_mask)
        mask_image = mask_image.to(device=device, dtype=init_latents.dtype)
        mask = torch.cat([mask_image] * batch_size)
        
        # 给init_latents加噪音
        noise = torch.randn(init_latents.shape, generator = generator, device = device, dtype = init_latents.dtype)
        init_latents = noise_scheduler.add_noise(init_latents, noise, timesteps[:1])
        latents = init_latents # 作为初始latents

        # Do denoise steps
        for t in tqdm(timesteps):
            # 这里latens扩展2份,是为了同时计算unconditional prediction
            latent_model_input = torch.cat([latents] * 2)
            latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t) # for DDIM, do nothing

            # 预测噪音
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

            # Classifier Free Guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # x_t -> x_t-1
            latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
            
            # 将unmask区域替换原始图像的nosiy latents
            init_latents_proper = noise_scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
            # mask的部分数值为0
            # 因此init_latents_proper * mask为保留原始latents(不mask)
            # 而latents * (1 - mask)为用生成的latents替换mask的部分
            latents = (init_latents_proper * mask) + (latents * (1 - mask)) 

        # 注意要对latents进行scale
        latents = 1 / 0.18215 * latents
        image = vae.decode(latents).sample
        
        # 转成pillow
        img = (image / 2 + 0.5).clamp(0, 1).detach().cpu()
        img = torchvision.transforms.ToPILImage()(img.squeeze())
        img.save("./outputs/output.png")
        print("All Done!")

运行结果:

3--基于Diffuser进行调用

import torch
import torchvision
from PIL import Image
from diffusers import StableDiffusionInpaintPipelineLegacy

if __name__ == "__main__":
    # load inpainting pipeline
    model_id = "runwayml/stable-diffusion-v1-5"
    # model_id = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/All_test/test0714/huggingface.co/runwayml/stable-diffusion-v1-5" # local path
    pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(model_id, torch_dtype = torch.float16).to("cuda")

    # load input image and input mask
    input_image = Image.open("./images/overture-creations-5sI6fQgYIuo.png").resize((512, 512))
    input_mask = Image.open("./images/overture-creations-5sI6fQgYIuo_mask.png").resize((512, 512))

    # run inference
    prompt = ["a mecha robot sitting on a bench", "a cat sitting on a bench"]
    generator = torch.Generator("cuda").manual_seed(0)
    with torch.autocast("cuda"):
        images = pipe(
            prompt = prompt,
            image = input_image,
            mask_image = input_mask,
            num_inference_steps = 50,
            strength = 0.75,
            guidance_scale = 7.5,
            num_images_per_prompt = 1,
            generator = generator
        ).images

    # 转成pillow
    for idx, image in enumerate(images):
        image.save("./outputs/output_{:d}.png".format(idx))
    print("All Done!")

运行结果:

### Stable Diffusion Inpainting 模型概述 Stable Diffusion v2 inpainting 是一种基于扩散过程的图像生成和修复模型。此模型不仅能够创建全新的图像,还能用于修补已有图片中的特定部分,从而实现高质量的图像修复效果[^1]。 #### 特殊输入通道 为了支持修复功能,在 SD 大模型基础上开发了一种专门针对修复任务优化过的版本——即所谓的 “SD 修复模型”。相较于普通的 Stable Diffusion 模型,这个变体引入了额外的五个 UNet 输入通道来处理掩码及其对应的图像数据[^3]。 这些新增加的通道允许网络理解哪些区域需要被修改以及如何依据周围环境来进行合理的填补工作。具体来说: - **Mask Channel**: 表示待填充区域的位置信息; - **Image Channels**: 提供原始未损坏的部分作为参考素材; 通过这种方式,即使面对复杂的场景或者大面积缺失的情况,也能得到较为理想的结果。 #### 工作机制解析 当执行 inpaint 操作时,算法会专注于由用户提供或自动生成的一个遮罩所定义的目标区域内。与此同时,考虑到整个画面的一致性和连贯性,其他非目标区域能够提供重要的上下文线索给神经网络用来指导新内容创作的方向[^4]。 这意味着即便是在非常局部化的编辑需求下(比如去除水印),也可以保持整体风格不变并维持自然过渡的效果。 ```python import torch from diffusers import StableDiffusionInpaintPipeline pipeline = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" ) image = ... # PIL image of the original picture with some parts masked out. mask_image = ... # Corresponding mask as a binary PIL Image (white pixels indicate areas to be filled). result = pipeline(prompt="A fantasy landscape", image=image, mask_image=mask_image).images[0] result.show() ``` 上述代码展示了如何加载预训练好的 Stable Diffusion inpainting 模型,并使用它完成一次简单的图像修复操作。这里的关键在于准备合适的 `image` 和 `mask_image` 参数传递给管道函数调用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值