[论文解读]CVPR 2018|RefineDet:Single-Shot Refinement Neural Network for Object Detection 结合单双阶段的优点做目标检测

RefineDet是CVPR 2018年的一篇论文,它结合了一阶段和二阶段目标检测的优点,创建了一个单一的检测网络。通过引入Anchor Refinement Module (ARM)和Object Detection Module (ODM),RefineDet解决了正负样本不平衡问题,同时提升了检测速度和精度。ARM减少了负样本,优化了anchor,而ODM则融合了高层和低层信息。论文中,作者还提出了特定的负样本处理策略和损失函数设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:Single-Shot Refinement Neural Network for Object Detection
论文作者:Shifeng Zhang , Longyin Wen , Xiao Bian, Zhen Lei , Stan Z. Li

目前,目标检测有两个文流分支:one stage and two stage。本文结合了这两个分支的优点,并到一起形成RefineDet。像是SSD、FPN、RPN的结合产物。
这两个分支的不同之处就在于对anchor的处理方式:two stage是先对anchor进行提取并精修,再送入CNN中进行分类和回归。不会像one stage那样直接对所有的anchor进行分类和回归,这样造成的正负样本不平衡问题,但在速度上One stage肯定是更胜一筹。
在这里插入图片描述
论文中心思想:作者采用了two stage的思想先用一个ARM网络结构对ancor 进行处理,ARM就像RPN网络,其作用如下:1)用于修正anchor,去掉多余的负样本,减少负本数量;2)对anchor的进行修正,使ODM网络更容易分类和回归。ODM网络是由ARM网络通过TCB网络处理得到。TCP就像FPN中的上采样那样,将高层的语义信息与低层的信息相融合。TCB网络如下图,直接对上采样的网络进行相加等到。
这样在各个feature map 上,每个anchor产生c个类别以及4个坐标。与SSD不一样的是,SSD使用的是default box去预测,而refineDet使用的是ARM网络产生的refined anchor去预测。这使RefineDet具备的one&tow stage的优点。
在这里插入图片描述

ARM网络中的负样本处理:先用IOU来判断正负样本的label,IOU<0.5就是负样本,从而得到很多负样本,再使用ARM中的分类的confidence进行过滤,如果ARM判断其negative的confidence大于设定的阈值(作者的经验值是0.99),就不要这个anchor。最后ARM和ODM都采用SSD那样的hard negative mining,通过loss的大小排序,取最大的部分,使正负样本比例达到1:3。

Loss Function:
在这里插入图片描述

如图,分别对ARM和ODM部分作分类和回归的损失函数。li∗l^∗_iligi∗g^∗_igi​表示ground truth的类别和坐标,pip_ipi​和xix_ixi表示ARM中的预测置信度和坐标。cic_icitit_iti表示ODM中的预测的类别和bounding box坐标。损失函数采用的方法:ARM中的LbL_bLb表示交叉熵用于二分类,ODM中的LmL_mLm​表示softmax loss,LrL_rLr​表示smooth L1.

实现结果:
不多说直接上图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
[完结]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一碗白开水一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值