题目大意 :给出一个无向图,每个权值代表速度,求出从点s到点e,速度最大时候的权值与速度最小时候的权值的最小差值;
思路 : 用Kruscal从小到大依次列举每条路,如果起始点连通,计算此时的速度差值(速度递增,起点和终点即为差值最大的两点),如果无法连通,则输出-1;
AC代码 :
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct node
{
int u, v, w;
operator < (const node &oth)const
{
return w < oth.w;
}
}e[maxn];
int p[maxn], n, m, k, q;
void init() {
for (int i = 1; i <= n; i++) p[i] = i;
k = 0;
}
int find_(int x) {
while (x != p[x]) x = p[x] = p[p[x]];
return x;
}
int main()
{
while (cin >> n >> m) {
memset(e, 0, sizeof(e));
for (int i = 0; i < m; i++)
cin >> e[i].u >> e[i].v >> e[i].w;
sort (e, e + m);
cin >> q;
while (q--) {
int ui, vi, min_ = INF;
cin >> ui >> vi;
for (int i = 0; i < m; i++) {
init();
for (int j = i; j < m; j++) {
int ul = find_(e[j].u);
int vl = find_(e[j].v);
if (ul != vl) p[ul] = vl;
if (find_(ui) == find_(vi)) min_ = min (min_, e[j].w - e[i].w);
}
}
if (min_ != INF) cout << min_ << endl;
else cout << -1 << endl;
}
}
return 0;
}