Tensorflow中的reduce_sum函数和reduce_mean函数

本文详细解析了TensorFlow中的reduce_sum和reduce_mean函数,包括它们的功能、参数含义及使用场景,帮助读者理解如何通过这些函数对张量进行有效的求和与平均运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensorflow中的reduce_sum函数

函数定义:

reduce_sum(
    input_tensor,
    axis=None,
    keep_dims=False,
    name=None,
    reduction_indices=None
)

说明:
reduce_sum() 就是求和,由于求和的对象是tensor,所以是沿着tensor的某些维度求和。函数名中加了reduce是表示求和后会降维,当然可以通过设置参数来保证不降维,但是默认就是要降维的。
参数解释:
1)input_tensor:输入的张量。
2)axis:沿着哪个维度求和。
对于二维的input_tensor张量,0表示按列求和,1表示按行求和,[0, 1]表示先按列求和再按行求和。
3)keep_dims:默认值为Flase,表示默认要降维。若设为True,则不降维。
4)name:名字。
5)reduction_indices:默认值是None,即把input_tensor降到 0维,也就是一个数。
对于2维input_tensor,reduction_indices=0时,按列;reduction_indices=1时,按行。
注意,reduction_indices与axis不能同时设置。

Tensorflow中的reduce_mean函数

tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。

reduce_mean(input_tensor,
                axis=None,
                keep_dims=False,
                name=None,
                reduction_indices=None)

第一个参数input_tensor: 输入的待降维的tensor;
第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值;
第三个参数keep_dims:是否降维度,设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度;
第四个参数name: 操作的名称;
第五个参数 reduction_indices:在以前版本中用来指定轴,已弃用;

参考:https://blog.youkuaiyun.com/dcrmg/article/details/79797826
https://www.jianshu.com/p/2d7db8b9cec9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值