1.动态规划思想学习

/*
   在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。
   路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。
   三角形的行数大于1小于等于100,数字为 0 - 99

    输入格式:

    5      //表示三角形的行数    接下来输入三角形
    7
    3   8
    8   1   0
    2   7   4   4
    4   5   2   6   5

    要求输出最大和
if(r==n)
    MaxSum(r,j)=D(r,j);
else
MaxSum(r,j)= max{MaxSum(i+1,j),MaxSum(i+1,j+1)}+D(r,j);
*/
#include<iostream>
#include<algorithm>
#define MAX 101
using namespace std;
int D[MAX][MAX];
int n;
int MaxSum(int i,int j){
   if(i==n) return D[i][j];
   int x=MaxSum(i+1,j);
   int y=MaxSum(i+1,j+1);
   return max(x,y)+D[i][j];
}

int main(){
 int i,j;
 cin>>n;
 for(i=1;i<=n;i++){
    for(j=1;j<=i;j++){
        cin>>D[i][j];
    }
 }
 cout<<MaxSum(1,1)<<endl;

}

在这里插入图片描述
就拿第三行数字1来说,当我们计算从第2行的数字3开始的MaxSum时会计算出从1开始的MaxSum,当我们计算从第二行的数字8开始的MaxSum的时候又会计算一次从1开始的MaxSum,也就是说有重复计算。这样就浪费了大量的时间。也就是说如果采用递规的方法,深度遍历每条路径,存在大量重复计算。则时间复杂度为 2的n次方,对于 n = 100 行,肯定超时。
接下来,我们就要考虑如何进行改进,我们自然而然就可以想到如果每算出一个MaxSum(r,j)就保存起来,下次用到其值的时候直接取用,则可免去重复计算。那么可以用n方的时间复杂度完成计算。因为三角形的数字总数是 n(n+1)/2
根据这个思路,我们就可以将上面的代码进行改进,使之成为记忆递归型的动态规划程序

#include <iostream>  
#include <algorithm> 
using namespace std;
 
#define MAX 101
  
int D[MAX][MAX];    
int n;  
int maxSum[MAX][MAX];
 
int MaxSum(int i, int j){      
	if( maxSum[i][j] != -1 )         
		return maxSum[i][j];      
	if(i==n)   
		maxSum[i][j] = D[i][j];     
	else{    
		int x = MaxSum(i+1,j);       
		int y = MaxSum(i+1,j+1);       
		maxSum[i][j] = max(x,y)+ D[i][j];     
	}     
	return maxSum[i][j]; 
} 
int main(){    
	int i,j;    
	cin >> n;    
	for(i=1;i<=n;i++)   
		for(j=1;j<=i;j++) {       
			cin >> D[i][j];       
			maxSum[i][j] = -1;   
		}    
	cout << MaxSum(1,1) << endl; 
} 

虽然在短时间内就AC了。但是,我们并不能满足于这样的代码,因为递归总是需要使用大量堆栈上的空间,很容易造成栈溢出,我们现在就要考虑如何把递归转换为递推,让我们一步一步来完成这个过程。
我们首先需要计算的是最后一行,因此可以把最后一行直接写出,如下图:
在这里插入图片描述
现在开始分析倒数第二行的每一个数,现分析数字2,2可以和最后一行4相加,也可以和最后一行的5相加,但是很显然和5相加要更大一点,结果为7,我们此时就可以将7保存起来,然后分析数字7,7可以和最后一行的5相加,也可以和最后一行的2相加,很显然和5相加更大,结果为12,因此我们将12保存起来。以此类推。。我们可以得到下面这张图:
在这里插入图片描述
上面的推导过程相信大家不难理解,理解之后我们就可以写出如下的递推型动态规划程序

#include <iostream>  
#include <algorithm> 
using namespace std; 
 
#define MAX 101  
 
int D[MAX][MAX];   
int n;  
int maxSum[MAX][MAX]; 
int main(){    
	int i,j;    
	cin >> n;    
	for(i=1;i<=n;i++)   
		for(j=1;j<=i;j++)        
			cin >> D[i][j];   
	for( int i = 1;i <= n; ++ i )     
		maxSum[n][i] = D[n][i];   
	for( int i = n-1; i>= 1;  --i )     
		for( int j = 1; j <= i; ++j )         
			maxSum[i][j] = max(maxSum[i+1][j],maxSum[i+1][j+1]) + D[i][j];    
	cout << maxSum[1][1] << endl;  
} 

我们的代码仅仅是这样就够了吗?当然不是,我们仍然可以继续优化,而这个优化当然是对于空间进行优化,其实完全没必要用二维maxSum数组存储每一个MaxSum(r,j),只要从底层一行行向上递推,那么只要一维数组maxSum[100]即可,即只要存储一行的MaxSum值就可以。
对于空间优化后的具体递推过程如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
接下里的步骤就按上图的过程一步一步推导就可以了。进一步考虑,我们甚至可以连maxSum数组都可以不要,直接用D的第n行直接替代maxSum即可。但是这里需要强调的是:虽然节省空间,但是时间复杂度还是不变的。

依照上面的方式,我们可以写出如下代码:    
#include <iostream>  
#include <algorithm> 
using namespace std; 
 
#define MAX 101  
 
int D[MAX][MAX];  
int n; 
int * maxSum; 
 
int main(){    
	int i,j;    
	cin >> n;    
	for(i=1;i<=n;i++)   
		for(j=1;j<=i;j++)        
			cin >> D[i][j];   
	maxSum = D[n]; //maxSum指向第n行    
	for( int i = n-1; i>= 1;  --i )     
		for( int j = 1; j <= i; ++j )       
			maxSum[j] = max(maxSum[j],maxSum[j+1]) + D[i][j];    
	cout << maxSum[1] << endl;  
}

接下来,我们就进行一下总结:
递归到动规的一般转化方法
递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始, 逐步填充数组,相当于计算递归函数值的逆过程。
动规解题的一般思路
1. 将原问题分解为子问题
把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
子问题的解一旦求出就会被保存,所以每个子问题只需求 解一次。
2.确定状态
在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状 态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。
所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。
整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。
3.确定一些初始状态(边界状态)的值
以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。
4. 确定状态转移方程
定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。
数字三角形的状态转移方程:
在这里插入图片描述
能用动规解决的问题的特点
1) 问题具有最优子结构性质。如果问题的最优解所包含的 子问题的解也是最优的,我们就称该问题具有最优子结 构性质。
2) 无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值