粒子群优化算法(PSO)
package psoo;
public class PSO {
Particle particles[];
Particle globalBestParticle;
Function function;
/**
* 构造粒子群
*
* @param size粒子的个数
*/
public PSO(int size, int dim, Function function) {
particles = new Particle[size];
globalBestParticle = new Particle(dim, function);
for (int i = 0; i < particles.length; i++) {
particles[i] = new Particle(dim, function);
particles[i].evaluate();
if (globalBestParticle.fitness < particles[i].fitness) {
// 找到更好的粒子
globalBestParticle.copyFrom(particles[i]);
}
}
}
/**
* 粒子群算法的运算
*
* @param maxiter运行最大代数
*/
public void run(int maxiter) {
int iter = 0;
while (iter < maxiter) {
for (int i = 0; i < particles.length; i++) {
particles[i].move(globalBestParticle);
}
for (int i = 0; i < particles.length; i++) {
particles[i].evaluate();
if (globalBestParticle.fitness < particles[i].fitness) {
// 找到更好的粒子
globalBestParticle.copyFrom(particles[i]);
System.out.println("算法运行到第" + iter + "代,发现更好的解:" + globalBestParticle.fitness);
}
}
iter++;
}
System.out.println("算法运行完毕,找到最优解:" + globalBestParticle.fitness);
}
}
package psoo;
import java.util.Random;
public class Particle {
public double[] x;// 粒子的位置
double[] v;// 粒子的速度
public double fitness;// 粒子当前求得的适应值
double pfitnesss;// 粒子的历史最优解
double[] px;// 粒子的历史最优位置
Function function;
static double w = 0.8;// 权重
static double c1 = 2.0;
static double c2 = 2.0;// 学习常数
static Random random = new Random();// 随机数产生器
static double lower = -100;
static double upper = 100;// 求解问题的上下界
int dim;// 维数
/**
* 初始化粒子,随机放置粒子位置和产生一个随机速度
*
*/
public Particle(int dim, Function fun) {
this.function = fun;
x = new double[dim];
v = new double[dim];
px = new double[dim];
for (int i = 0; i < dim; i++) {
x[i] = random.nextDouble() * (upper - lower) + lower;// 随机位置
v[i] = random.nextDouble() * (upper - lower) + lower;// 随机速度
px[i] = x[i];
}
pfitnesss = -1e8;
}
/**
* 评估粒子的适应值,也就是算出粒子代表的变量所对应的函数值 此处:f(x1,x2)=x1^2+x2^2;
*/
public double evaluate() {
/**
* double sum = 0; for (double i : x) { sum += i * i; } fitness = sum;
**/
fitness = function.evaluate(x);
// 判断现在的适应值是不是比自己历史最优的还要好
// 如果是,替换掉
if (fitness > pfitnesss) {
for (int i = 0; i < px.length; i++) {
px[i] = x[i];
}
pfitnesss = fitness;
}
return fitness;
}
/**
* 粒子做一次移动,他的移动要根据自身的最优位置和全局的最优位置来决定
*
* @param gbestParticle:全局最优位置
*/
public void move(Particle gbestParticle) {
// 更新自己的位置
for (int i = 0; i < x.length; i++) {
x[i] = x[i] + v[i];
// 判断不能越界
if (x[i] > upper) {
x[i] = upper;
}
if (x[i] < lower) {
x[i] = lower;
}
}
// 更新速度
for (int i = 0; i < v.length; i++) {
v[i] = w * v[i] + c1 * random.nextDouble() * (px[i] - v[i])
+ c2 * random.nextDouble() * (gbestParticle.x[i] - x[i]);
// 判断不能越界
if (v[i] > (upper - lower)) {
v[i] = upper - lower;
}
if (v[i] < (lower - upper)) {
v[i] = lower - upper;
}
}
}
public void copyFrom(Particle particle) {
this.fitness = particle.fitness;
for (int i = 0; i < x.length; i++) {
this.x[i] = particle.x[i];
}
}
/**
* 打印染色体信息
*/
public String toString() {
double result1 = 0;
double result2 = 0;
for (double i : x) {
result1 += i;
}
for (double i : v) {
result1 += i;
}
return "他的位置为:" + result1 + "他的方向为:" + result2 + "他的适应值为:" + fitness;
}
}
注:实现接口处写需要求得函数即可
package psoo;
public interface Function {
double evaluate(double values[]);// 一系列的输入,一系列的输出
}
package functions;
import psoo.Function;
public class Function2 implements Function {
@Override
public double evaluate(double[] values) {
double sum = 0;
double result = 0;
for (int i = 0; i < values.length; i++) {
sum += values[i] * values[i];
// System.out.println(values[i]);
}
result = 10 - (Math.pow(Math.sin(Math.pow(sum, 1.0 / 2)), 2) - 0.5) / ((1 + 0.001 * sum) / (1 + 0.001 * sum))
+ 0.5;
return result;
}
}
package main;
import functions.Function2;
import psoo.Function;
import psoo.PSO;
public class Main {
public static void main(String[] args) {
Function function2 = new Function2();
PSO psoo = new PSO(10, 10, function2);
psoo.run(10000);
}
}