题目:
clc
clear all
%% 绘制目标函数曲线图
x = 1:0.01:2;
y = sin(10*pi*x) ./ x;
figure
plot(x, y)
hold on
%% 参数初始化
c1 = 1.49445;
c2 = 1.49445;
maxgen = 50; % 进化次数
sizepop = 10; %种群规模
Vmax = 0.5; %速度的范围,超过则用边界值。
Vmin = -0.5;
popmax = 2; %个体的变化范围
popmin = 1;
%%产生初始粒子和速度
for i = 1:sizepop
% 随机产生一个种群
pop(i,:) = (rands(1) + 1) / 2 + 1; %初始种群,rands产生(-1,1),调整到(1,2)
V(i,:) = 0.5 * rands(1); %初始化速度
% 计算适应度
fitness(i) = fun(pop(i,:));
end
%% 个体极值和群体极值
[bestfitness bestindex] = max(fitness);
zbest = pop(bestindex,:); %全局最佳
gbest = pop; %个体最佳
fitnessgbest = fitness; %个体最佳适应度值
fitnesszbest = bestfitness; %全局最佳适应度值
%% 迭代寻优
for i = 1:maxgen
for j = 1:sizepop
% 速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin;
% 种群更新
pop(j,:) = pop(j,:) + V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin;
% 适应度值更新
fitness(j) = fun(pop(j,:));
end
for j = 1:sizepop
% 个体最优更新
if fitness(j) > fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
% 群体最优更新
if fitness(j) > fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i) = fitnesszbest;
end
%% 输出结果并绘图
[fitnesszbest zbest]
plot(zbest, fitnesszbest,'r*')
figure
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
理论部分见:https://blog.youkuaiyun.com/weixin_43832736/article/details/90181259