粒子群优化算法示例程序

本文详细介绍了粒子群优化算法(PSO)的工作原理及其在解决特定优化问题中的应用。通过MATLAB代码实例,展示了如何使用PSO算法进行目标函数优化,并分析了算法中的关键参数设置与迭代过程。此外,还提供了理论参考资料,帮助读者深入理解PSO算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:在这里插入图片描述

clc
clear all
 
%% 绘制目标函数曲线图
x = 1:0.01:2;
y = sin(10*pi*x) ./ x;
figure
plot(x, y)
hold on
 
%% 参数初始化
c1 = 1.49445;
c2 = 1.49445;
maxgen = 50;   % 进化次数  
sizepop = 10;   %种群规模 
Vmax = 0.5;   %速度的范围,超过则用边界值。
Vmin = -0.5;  
popmax = 2;   %个体的变化范围
popmin = 1;
 
%%产生初始粒子和速度
for i = 1:sizepop
    % 随机产生一个种群
    pop(i,:) = (rands(1) + 1) / 2 + 1;    %初始种群,rands产生(-1,1),调整到(1,2)
    V(i,:) = 0.5 * rands(1);  %初始化速度
    % 计算适应度
    fitness(i) = fun(pop(i,:));   
end
 
%% 个体极值和群体极值
[bestfitness bestindex] = max(fitness);
zbest = pop(bestindex,:);   %全局最佳
gbest = pop;    %个体最佳
fitnessgbest = fitness;   %个体最佳适应度值
fitnesszbest = bestfitness;   %全局最佳适应度值
 
%% 迭代寻优
for i = 1:maxgen
    for j = 1:sizepop
        % 速度更新
        V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
        V(j,find(V(j,:)>Vmax)) = Vmax;
        V(j,find(V(j,:)<Vmin)) = Vmin;
        
        % 种群更新
        pop(j,:) = pop(j,:) + V(j,:);
        pop(j,find(pop(j,:)>popmax)) = popmax;
        pop(j,find(pop(j,:)<popmin)) = popmin;
        
        % 适应度值更新
        fitness(j) = fun(pop(j,:)); 
    end
    for j = 1:sizepop    
        % 个体最优更新
        if fitness(j) > fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitness(j);
        end
        
        % 群体最优更新
        if fitness(j) > fitnesszbest
            zbest = pop(j,:);
            fitnesszbest = fitness(j);
        end
    end 
    yy(i) = fitnesszbest;          
end
 
%% 输出结果并绘图
[fitnesszbest zbest]
plot(zbest, fitnesszbest,'r*')
figure
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);

理论部分见:https://blog.youkuaiyun.com/weixin_43832736/article/details/90181259

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值