Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful numbers in given ranges.
Input
The first line of the input contains the number of cases t (1 ≤ t ≤ 10). Each of the next t lines contains two natural numbers li and ri (1 ≤ li ≤ ri ≤ 9 ·1018).
Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).
Output
Output should contain t numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from li to ri, inclusively).
Examples
Input
1 1 9
Output
9
Input
1 12 15
Output
2
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD=2520;//1~9公共的最小公倍数
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a*b/gcd(a,b);}
ll dp[30][MOD][50];
ll a[30],Hash[MOD];
ll DFS(int pos,int presum,int prelcm,int limit)
{
if(pos==0)
return presum%prelcm==0;//返回逻辑值
if(!limit&&dp[pos][presum][Hash[prelcm]]!=-1)
return dp[pos][presum][Hash[prelcm]];
int up=limit?a[pos]:9;
ll res=0;
for(int i=0;i<=up;i++){
int nowsum=(presum*10+i)%MOD;//可以对MOD任意取模而不影响结果
int nowlcm=prelcm;
if(i!=0)
nowlcm=lcm(prelcm,i);
res+=DFS(pos-1,nowsum,nowlcm,limit&&i==up);
}
if(limit)
return res;
return dp[pos][presum][Hash[prelcm]]=res;
}
ll solve(ll n)
{
int top=0;
while(n){
a[++top]=n%10;
n/=10;
}
return DFS(top,0,1,1);
}
void Init()
{
int cnt=0;
for(int i=1;i<=2520;i++){//Hash一下
if(MOD%i==0)
Hash[i]=cnt++;
}
}
int main()
{
ios::sync_with_stdio(0);
Init();
int T;
memset(dp,-1,sizeof(dp));
cin>>T;
while(T--){
ll l,r;
cin>>l>>r;
cout<<solve(r)-solve(l-1)<<endl;
}
return 0;
}