原理:
基于二维的Otsu(灰度级-平均灰度级)图像分割方式的思想与一维 Otsu 图像分割的思想一样。
二维的Otsu提高了一维的抗噪能力。
用f(i,j)和g(i,j)取代像素点(i,j)处的灰度值f(i,j);其中g(i,j)为像素点(i,j)处邻域像素值的均值。
取代后变成二维形式:[ f(i,j),g(i,j) ]。
设:灰度值为 i ,灰度均值为 j 的像素点个数为 ni,其概率 Pij 为:
其中M*N是图像的总像素数。
以阈值(s,t)将图像像素分为 A B 两类,其中 令 A 类为背景类,B 类为目标类,二者概率分别为:
背景类和目标类的均值向量分别为:
整幅图像的均值向量为:
由离散测度矩阵:
得该图像的离散测度: