【图像处理】PCL点云数据的滤波降噪的方法

本文探讨了点云数据处理中的关键步骤——滤波。详细介绍了双边、高斯、分箱、KD-Tree、直通、随机采样一致性等滤波方法,以及体素、半径滤波的应用。通过实例代码展示了直通、体素、统计和半径滤波器的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么进行点云滤波处理:
(1) 点云数据密度不规则需要平滑;
(2) 因为遮挡等问题造成离群点需要去除;
(3) 大量数据需要下采样;
(4) 噪声数据需要去除;

点云数据去噪滤波方法:
双边滤波、高斯滤波、分箱去噪、KD-Tree、直通滤波、随机采样一致性滤波等;

方法定义以及适用性:
1.双边滤波:将距离和空间结构结合去噪,效果较好。只适用于有序点云

2.高斯滤波(标准差去噪):适用于呈正态分布的数据。考虑到离群点的特征,则可以定义某处点云小于某个密度,既点云无效。计算每个点到其最近的k个点平均距离。则点云中所有点的距离应构成高斯分布。给定均值与方差,可剔除3∑之外的点。

3.分箱去噪:适用于呈偏态分布的数据。

4.dbscan:基于聚类原理去噪,复杂度较高。

5.KD-Tree(孤立森林):复杂度高。构建KD树,随机取点求平均距离d,删掉所有大于2d的点。适用于无序点云去噪。

6.条件滤波:条件滤波器通过设定滤波条件进行滤波,有点分段函数的味道,当点云在一定范围则留下,不在则舍弃。

7.直通滤波

8.随机采样一致性滤波

9.体素滤波:
体素的概念类似于像素,使用AABB包围盒将点云数据体素化,一般体素越密集的地方信息越多,噪音点及离群点可通过体素网格去除。另一方面如果使用高分辨率相机等设备对点云进行采集,往往点云会较为密集。过多的点云数量会对后续分割工作带来困难。体素滤波器可以达到向下采样同时不破坏点云本身几何结构的功能。

10.半径滤波:
半径滤波器与统计滤波器相比更加简单粗暴。以某点为中心画一个圆计算落在该圆中点的数量,当数量大于给定值时,则保留该点,数量小于给定值则剔除该点。此算法运行速度快,依序迭代留下的点一定是最密集的,但是圆的半径和圆内点的数目都需要人工指定。

原理以及核心代码:

直通滤波器:对于在空间分布有一定空间特征的点云数据,比如使用线结构光扫描的方式采集点云,沿z
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_ClivenZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值