如何实现线程之间的通信?
如何实现线程池的任务编排?
这两个问题其实一样。
线程通讯的实现方式主要有以下两种:
- 共享内存:多个线程可以访问同一个共享内存区域,通过读取和写入内存中的数据来进行通讯和同步。
- 消息传递:多个线程之间通过消息队列、管道、信号量等机制来传递信息和同步状态。
线程通讯的实现方法有以下几种:
- synchronized + 对象的等待和通知机制:使用 Object 类的 wait() 和 notify() 方法来实现线程之间的通讯。当一个线程需要等待另一个线程执行完某个操作时,它可以调用 wait() 方法使自己进入等待状态,同时释放占有的锁,等待其他线程调用 notify() 或 notifyAll() 方法来唤醒它。被唤醒的线程会重新尝试获取锁并继续执行。
- 信号量机制:使用 Java 中的 Semaphore 类来实现线程之间的同步和互斥。Semaphore 是一个计数器,用来控制同时访问某个资源的线程数。当某个线程需要访问共享资源时,它必须先从 Semaphore 中获取一个许可证,如果已经没有许可证可用,线程就会被阻塞,直到其他线程释放了许可证。
- 栅栏机制:使用 Java 中的 CyclicBarrier 类来实现多个线程之间的同步,它允许多个线程在指定的屏障处等待,并在所有线程都达到屏障时继续执行。
- 锁机制:使用 Java 中的 Lock 接口和 Condition 接口来实现线程之间的同步和互斥。Lock 是一种更高级的互斥机制,它允许多个条件变量(Condition)并支持在同一个锁上等待和唤醒。
1.synchronized + 对象的等待和通知机制
可以参考:https://blog.youkuaiyun.com/weixin_43751710/article/details/105438104
public class WaitNotifyDemo {
public static void main(String[] args) {
Object lock = new Object();
ThreadA threadA = new ThreadA(lock);
ThreadB threadB = new ThreadB(lock);
threadA.start();
threadB.start();
}
static class ThreadA extends Thread {
private Object lock;
public ThreadA(Object lock) {
this.lock = lock;
}
public void run() {
synchronized (lock) {
System.out.println("ThreadA start...");
try {
lock.wait(); // 线程A等待
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("ThreadA end...");
}
}
}
static class ThreadB extends Thread {
private Object lock;
public ThreadB(Object lock) {
this.lock = lock;
}
public void run() {
synchronized (lock) {
System.out.println("ThreadB start...");
lock.notify(); // 唤醒线程A
System.out.println("ThreadB end...");
}
}
}
}
2.信号量机制
在 Java 中使用 Semaphore 实现信号量,Semaphore 是一个计数器,用来控制同时访问某个资源的线程数。当某个线程需要访问共享资源时,它必须先从 Semaphore 中获取一个许可证,如果已经没有许可证可用,线程就会被阻塞,直到其他线程释放了许可证。它的示例代码如下:
import java.util.concurrent.Semaphore;
public class SemaphoreDemo {
public static void main(String[] args) {
Semaphore semaphore = new Semaphore(2);
for (int i = 0; i < 5; i++) {
new Thread(new Worker(i, semaphore)).start();
}
}
static class Worker implements Runnable {
private int id;
private Semaphore semaphore;
public Worker(int id, Semaphore semaphore) {
this.id = id;
this.semaphore = semaphore;
}
@Override
public void run() {
try {
semaphore.acquire();
System.out.println("Worker " + id + " acquired permit.");
Thread.sleep(1000);
System.out.println("Worker " + id + " released permit.");
semaphore.release();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
3. 栅栏机制
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo {
public static void main(String[] args) {
CyclicBarrier cyclicBarrier = new CyclicBarrier(3, new Runnable() {
@Override
public void run() {
System.out.println("All threads have reached the barrier.");
}
});
for (int i = 1; i <= 3; i++) {
new Thread(new Worker(i, cyclicBarrier)).start();
}
}
static class Worker implements Runnable {
private int id;
private CyclicBarrier cyclicBarrier;
public Worker(int id, CyclicBarrier cyclicBarrier) {
this.id = id;
this.cyclicBarrier = cyclicBarrier;
}
@Override
public void run() {
try {
System.out.println("Worker " + id + " is working.");
Thread.sleep((long) (Math.random() * 2000));
System.out.println("Worker " + id + " has reached the barrier.");
cyclicBarrier.await();
System.out.println("Worker " + id + " is continuing the work.");
} catch (InterruptedException | BrokenBarrierException e) {
e.printStackTrace();
}
}
}
}
4.锁机制
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ConditionDemo {
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
private volatile boolean flag = false;
public static void main(String[] args) {
ConditionDemo demo = new ConditionDemo();
new Thread(demo::waitCondition).start();
new Thread(demo::signalCondition).start();
}
private void waitCondition() {
lock.lock();
try {
while (!flag) {
System.out.println(Thread.currentThread().getName() + " is waiting for signal.");
condition.await();
}
System.out.println(Thread.currentThread().getName() + " received signal.");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
private void signalCondition() {
lock.lock();
try {
Thread.sleep(3000); // 模拟等待一段时间后发送信号
flag = true;
System.out.println(Thread.currentThread().getName() + " sends signal.");
condition.signalAll();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
原文链接:https://www.javacn.site/interview/thread/thread-communication.html#%E7%AD%89%E5%BE%85%E9%80%9A%E7%9F%A5%E5%AE%9E%E7%8E%B0