kNN python实现

本文介绍了如何使用Python实现k近邻(kNN)算法,并涵盖了数据预处理的均值方差归一化步骤。

kNN.py:

# coding:utf-8

import numpy as np
from math import sqrt
from collections import Counter
from metrics import accuracy_score


class kNNClassifier:
    def __init__(self, k):
        '''初始化KNN分类器'''
        assert 1 <= k,  'k must be valid'
        self.k = k
        self._X_train = None
        self._y_train = None

    def fit(self, X_train, y_train):
        '''根据训练数据集X-train和y_train训练kNN分类器'''
        assert X_train.shape[0] == y_train.shape[0], 'the size of X_train must equal to the size of y_train'
        assert self.k <= X_train.shape[0], 'the size of X_train must be at least k'

        self._X_train = X_train
        self._y_train = y_train
        return self

    def predict(self, X_predict):
        '''给定带预测数据集X_predict,返回表示X_predict的结果向量'''
        assert self._X_train is not None and self._y_train is not None,  'must fit before predict'
        assert X_predict.shape[1] == self._X_train.shape[1],  'the feature number of X_predict equal to the feature number of self._X_train'

        y_predict = [self._predict(x) for x in X_predict]
        return np.array(y_predict)

    def _predict(self, x):
        '''给定单个待预测数据x,返回x的预测结果值'''
        assert x.shape[0] == self._X_train.shape[1], 'the feature number of x must be equal to X_train'
        distances = [sqrt(np.sum((x_train - x)**2))
                     for x_train in self._X_train]
        nearest = np.argsort(distances)
        topK_y = [self._y_train[i] for i in nearest[:self.k]]
        votes = Counter(topK_y)
        return votes.most_common(1)[0][0]

    def score(self, X_test, y_test):
        '''计算对测试集的预测准确度'''
        y_predict = self.predict(X_test)
        return accuracy_score(y_test, y_predict)

    def __repr__(self):
        return 'kNN(k=%d)' % self.k

# 使用:
# kNN_clf = kNNClassifier(3)
# kNN_clf.fit(X_train,y_train)
# kNN_clf.predict(x)
# kNN_clf.score(X_test,y_test)

metrics.py:

import numpy as np

def accuracy_score(y_test,y_predict):
  '''计算y_predict相对于y_test的准确度'''
  assert y_test.shape[0] == y_predict.shape[0],'the size of y_test must equal to the size of y_predict'
  return sum(y_predict == y_test) / len(y_test)

数据归一化处理(均值方差归一化):

import numpy as np 

class StandardScaler:
  def __init__(self):
    self.mean_ = None
    self.scale_ = None

  def fit(self,X):
    '''根据训练数据集X获得数据均值和方差'''
    assert X.ndim == 2,'the dimension of X must be 2'
    self.mean_ = np.array([np.mean(X[:,i]) for i in range(X.shape[1])])
    self.scale_ = np.array([np.std(X[:,i]) for i in range(X.shape[1])])

    return self

  def transform(self,X):
    '''将X根据已有信息进行均值方差归一化处理'''
    assert X.ndim == 2,'the dimension of X must be 2'
    assert self.mean_ is not None and self.scale_ is not None , 'must fit before transform!'
    assert X.shape[1] == len(self.mean_),'the feature number of X must be equal to mean_ and std_'
    resX = np.empty(shape = X.shape,dtype = float)
    for col in range(0,X.shape[1]):
      resX[:,col] = (X[:,col] - self.mean_[col])/self.scale_[col]
    return resX
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值