深度学习-np.pad 填充详解

大家伙在学习深度学习的卷积网络里有一个填充的问题是难免遇到的 所以np给了pad()这个函数来实现填充 但是多维度(大多数情况下是三维的)的pad函数却很难理解 博主就稍微写一点自己的理解 试图帮助大家理解 不喜勿喷 谢谢!

对一维数组的填充

import numpy as np
arr1D = np.array([1, 1, 2, 2, 3, 4])
'''不同的填充方法'''
print 'constant:  ' + str(np.pad(arr1D, (2, 3), 'constant'))
print 'edge:  ' + str(np.pad(arr1D, (2, 3), 'edge'))
print 'linear_ramp:  ' + str(np.pad(arr1D, (2, 3), 'linear_ramp'))
print 'maximum:  ' + str(np.pad(arr1D, (2, 3), 'maximum'))
print 'mean:  ' + str(np.pad(arr1D, (2, 3), 'mean'))
print 'median:  ' + str(np.pad(arr1D, (2, 3), 'median'))
print 'minimum:  ' + str(np.pad(arr1D, (2, 3), 'minimum'))
print 'reflect:  ' + str(np.pad(arr1D, (2, 3), 'reflect'))
print 'symmetric:  ' + str(np.pad(arr1D, (2, 3), 'symmetr
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值