图文并茂:什么是 K-means 聚类算法

本文介绍了聚类算法中的k-means,它是无监督学习的一种,用于发现数据对象之间的关系并进行分组。k-means通过设置k值,计算欧式距离来不断迭代优化簇的分配,以达到各簇内相似度高、簇间差异大的目标。算法的缺点包括对初始质心选择敏感和k值难以确定。通过实例和图示,帮助读者深入理解k-means的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

  聚类属于机器学习的无监督学习,在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。

        它跟分类的最主要区别就在于有没有“标签”。比如说我们有一组数据,数据对应着每个“标签”,我们通过这些数据与标签之间的相关性,预测出某些数据属于哪些“标签”,这属于分类;而聚类是没有“标签”的,因此说它属于无监督学习,分类则属于监督学习。

  k-means(k-均值)属于聚类算法之一,笼统点说,它的过程是这样的:先设置参数k,通过欧式距离进行计算,从而将数据集分成k个簇。为了更好地理解这个算法,下面更加详细的介绍这个算法的思想。

算法思想

  我们先过一下几个基本概念:

 (1) K值:即要将数据分为几个簇;

 (2) 质心:可理解为均值,即向量各个维度取平均值,这个是我们聚类算法一个重要的指标;

 (3) 欧式距离:

  上面的这3条基本概念你大可不必太纠结,因为这是为了让你看下面的内容时,能够更好理解。假如说,我们现在有一堆数据集,在图像上的分布是这样的:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值