动态规划基本思想及概念

文章目录

  • 基本原理
  • 最优子结构
  • 最优化原理
  • juxianx
  • 为什么需要最优子结构
  • 总结


基本原理

把原始问题分解成一系列子问题,求解每个子问题仅一次,并将其结果存入表(数组)中,以后用到直接调用,不重复计算,节省计算时间。

一、最优子结构

一个问题的最优解包含了子问题的最优解

二、最优化原理

对于多阶段决策问题,作为整个过程的最优策略必然具有这样的性质:无论过去的状态和决策如何,就所形成的状态而言,余下的诸策略必然构成一个最优子策略。多阶段决策问题的这一规律称为最优化原理。

or

作为整个过程的最优策略,它满足:相对前面决策所形成的状态而言,余下的子策略必然构成“最优子策略

三、局限性

动态规划对于解决多阶段决策问题的效果是明显的,但是动态规划也有一定的局限性。首先,它没有统一的处理方法,必须根据问题的各种性质并结合一定的技巧来处理;另外当变量的维数增大时,总的计算量及存贮量急剧增大。因而,受计算机的存贮量及计算速度的限制,当今的计算机仍不能用动态规划方法来解决较大规模的问题,这就是“维数障碍”

四、为什么要使用最优化子结构

最优子结构性质是指大问题的最优解包含子问题的最优解。 动态规划方法是自底向上计算各个子问题的最优解,即先计算子问题的最优解,然后再利用子问题的最优解构造大问题的最优解,因此需要最优子结构.”


总结

none

基本概念,有很多不同的表述,但所表达的意思是相同的,可以选取一种更好理解的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值