import skimage.io as io
import os,sys
from skimage import data_dir
import numpy as np
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
path="/home/public/桌面/hongyi/trainA/";
dirs=os.listdir(path)
x_all=[]
for file in dirs:
img = load_img(path+file)
x = img_to_array(img)
x = x.reshape((1,) + x.shape) # 这是一个numpy数组,形状为 (1, 3, 150, 150)
x_all.append(x)
i = 0
for batch in datagen.flow(x, batch_size=1,
save_to_dir='/home/public/桌面/hongyi/results1'):
i += 1
if i > 50: # 数据扩充倍数,此处为数据扩充50倍
break # 否则生成器会退出循环
rotation_range: 旋转范围, 随机旋转(0-180)度;
width_shift and height_shift: 随机沿着水平或者垂直方