三分求单峰函数极值
由于题目给定的是 先增后减的函数
于是我们就可以画一个图:
F ( x ) = x 3 − 3 x 2 − 3 x + 1 F(x) = x^3 - 3x^2 - 3x + 1 F(x)=x3−3x2−3x+1
然后就可以取两个点:
上图代表 f ( l m i d ) < f ( r m i d ) f(lmid) < f(rmid) f(lmid)<f(rmid)
于是可以舍弃lmid的左区间,即 l = mid ,然后反之亦然,于是就会有如下代码:
#pragma G++ optimize(2)
#pragma GCC optimize(2)
#include<iostream>
#include<algorithm>
#include<stack>
#include<vector>
#include<iostream>
#include<climits>
#include<queue>
#include<cassert>
#include<iomanip>
#include<cmath>
#include<string>
#include<cstdio>
#include<cstring>
#define _rep(i, a, b) for(int i = (a); i <= (b); ++i)
#define _rev(i, a, b) for(int i = (a); i >= (b); --i)
#define _for(i, a, b) for(int i = (a); i <(b); ++i)
#define _rof(i, a, b) for(int i = (a); i >(b); --i)
#define maxn 22
#define maxm 109
#define oo 0x3f
#define ll long long
#define met(a,b) memset((a),(b), sizeof(a))
#define db long double
#define eps 1e-6
#define lowbit(x) x & (-x)
//#define DEBUG
using namespace std;
db a[maxn], l, r;
int n;
inline db f(db x) {
db ret = 0;
_rep(i, 1, n + 1)ret = ret * x + a[i];
return ret;
}
int main() {
ios::sync_with_stdio(0);
cin >> n >> l >> r;
_rep(i, 1, n + 1) cin >> a[i];
while (r - l >= eps) {
db mid = (l + r) / 2;//选定区间中点,每次取mid + eps, mid - eps两个点,把区间分成三段,这样取区间每次都减少二分之一,时间复杂度是log级别的
if (f(mid + eps) > f(mid - eps))l = mid;//舍弃左区间,
else r = mid;
}
printf("%.5llf\n", l);
}